Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Particles containing lead affect the climate by promoting ice formation in clouds

12.05.2009
Lead pollution in the air may have considerably curbed the greenhouse effect in the past - article in Nature Geoscience

Lead pollution in the air stimulates the formation of ice particles in clouds.

A team of scientists from the USA, Germany and Switzerland has found that particles containing lead are excellent seeds for the formation of ice crystals in clouds. This not only has a bearing on the formation of rain and other forms of precipitation but may also have an influence on the global climate.

This is because the heat given off from the earth's surface is more efficiently radiated into space by ice clouds (cirrus) with lead-containing particles than has been hitherto realized. In comparison to clouds with a low lead content, clouds with a high lead content thus actually help cool the earth. Over the last twenty years, there has been a continuing decrease in the rate of anthropogenic lead emissions. This may mean that the greenhouse effect is now even more pronounced because lead-containing clouds once previously helped limit it.

At the Sphinx Observatory, a Swiss research station on the Jungfraujoch at an altitude of 3,580 meters, scientists from various institutions, including the Universities of Frankfurt and Mainz, and the Max Planck Institute for Chemistry in Mainz, investigated the chemical composition of clouds in the winters of 2006 and 2007. "What mainly interested us was the question of how ice particles form. Water particles in the atmosphere do not simply freeze at zero degrees. On the contrary, at temperatures as low as minus 37 degrees they still need an ice nucleus, for example an aerosol particle, before ice formation is triggered," explains Professor Joachim Curtius of the Institute for Atmosphere and Environment (IAU) at the Goethe University Frankfurt. The same principle is also employed for snow guns, and in this case proteins derived from Pseudomonas bacteria are sometimes used as the ice-forming nuclei - a controversial application.

Scientists attach a lot of importance to the presence of ice particles in clouds, as they make a vital contribution to the genesis of rain drops within clouds. "Until we know what kinds of particles trigger ice formation in the atmosphere we will not be able to understand climatic change or the global hydrological cycle," comments Professor Stephan Borrmann. The atmospheric physicist is the head of the "Department of Particle Chemistry," a joint venture of the Max Planck Institute for Chemistry and the Institute for Atmospheric Physics at Johannes Gutenberg University Mainz.

Investigations conducted on the Swiss Jungfraujoch and in the Rocky Mountains in Colorado have found that particles that contain lead are among the most effective ice nuclei to be found in the atmosphere. "What was really new for us was the remarkable frequency with which we found lead in the ice particles," says Curtius. "We were able to identify lead in around every second ice nucleus while only one in twenty of the average aerosol particles contained lead." However, lead on its own is not enough to form an ice nucleus. Minute lead particles combine with other constituents of the air, such as mineral dust from the Sahara. Some of these mineral dust particles can themselves act as ice nuclei. Once combined with lead, however, a good ice nucleus becomes an outstanding ice nucleus that is able to initiate ice crystallization at higher temperatures and at lower humidities.

Laboratory experiments at the AIDA Aerosol and Cloud Chamber at the Karlsruhe Research Center have confirmed the results of the field studies in Switzerland. Furthermore, model calculations by the Swiss Federal Institute of Technology Zurich show that lead-containing particles change the properties of cirrus clouds so that these significantly influence the extent to which long-wave radiation escapes from the earth into space. If all ice-forming mineral particles contained lead, the heat emitted by the earth could theoretically be as much as 0.8 watts per square meter. By way of comparison: The climate forcing generated as a result of anthropogenic CO2 emissions is equivalent to roughly 1.6 watts per square meter. The lead-containing ice nuclei thus presumably have a cooling effect on the climate due to their indirect influence on ice cloud formation.

Scientists now assume that as a result of the significantly higher levels of lead pollution in the 1970s and 1980s - resulting from the use of leaded petrol and due to lead emissions from power stations - the great majority of all mineral dust particles were contaminated with lead and as a result more heat escaped from the earth than at present. "This probably led to global inhibition of rises in temperature to some extent, whereas today almost the full greenhouse effect is kicking in," says Curtius.

But a return to the lead emission levels of the late 20th century is hardly desirable. Lead is a toxic heavy metal that can cause severe damage to health. "However, with the benefit of hindsight we can now explain why there has been a trend towards more rapid temperature rises in recent years; it is because mankind has cut back its emissions of lead and sulphates," claims Borrmann.

"These results show that anthropogenic emissions can influence ice nuclei precipitation and, as a result, change precipitation and the climate," to quote the research results published in Nature Geoscience. Among the institutions participating in the project were Technische Universität Darmstadt, the Leibniz Institute for Tropospheric Research in Leipzig, the Pacific Northwest National Laboratory in Richland/Washington, and the U.S. government agency, the National Oceanic and Atmospheric Administration in Boulder/Colorado. Mainz and Frankfurt Universities, Technische Universität Darmstadt ?and the Max Planck Institute for Chemistry participated in the project within the context of the Collaborative Research Center 641 "The tropospheric ice phase" funded by the German Research Foundation (DFG).

Original publication:
Daniel J. Cziczo, Olaf Stetzer, Annette Worringen, Martin Ebert, Stephan Weinbruch, Michael Kamphus, Stephane J. Gallavardin, Joachim Curtius, Stephan Borrmann, Karl D. Froyd, Stephan Mertes, Ottmar Möhler and Ulrike Lohmann
Inadvertent climate modification due to anthropogenic lead
Nature Geoscience, online publication 19 April 2009
doi: 10,1038/ngeo499

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/
http://www.nature.com/ngeo/journal/vaop/ncurrent/abs/ngeo499.html

More articles from Earth Sciences:

nachricht Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems
29.03.2017 | University of Wyoming

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>