Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Sees Typhoon Rammasun's Eye Staring at Visayas, Philippines

16.07.2014

Early on July 15, Typhoon Rammasun began making landfall in the eastern part of the central Philippines and NASA's Aqua and TRMM satellites spotted the 20 nautical-mile-wide (23 mile/37 km) eye of the storm close to landfall.

Typhoon Rammasun was making landfall in the Visayas region. Visayas is located in the central Philippines.


TRMM satellite passed over Rammasun on July 15 at 12:10 a.m. EDT and found moderate rainfall (35 mm/1.4 in/hr) around the center and moderate to heavy rainfall (50 mm/2 in/hr) over the central and northern Philippines.

Image Credit: SSAI/NASA, Hal Pierce

The Tropical Rainfall Measuring Mission or TRMM satellite passed over Rammasun on Tuesday, July 15, 2014 at 04:10 UTC (12:10 a.m. EDT) and measured rainfall occurring throughout the storm.

TRMM found moderate rainfall (about 35 mm)/1.4 inches per hour) around the center of circulation and moderate to heavy rainfall (50 mm/2 inches per hour) over the central and northern Philippines in the western quadrant of Rammasun.

When NASA's Aqua satellite flew over Typhoon Rammasun on July 15 at 05:00 UTC (1 a.m. EDT) the Moderate Resolution Imaging Spectroradiometer instrument known as MODIS took a visible image of the storm.

The MODIS image showed Rammasun's eye just east of the Visayas region. Rammasun's clouds stretched over the entire country and west into the South China Sea.

Another instrument aboard Aqua took an infrared picture of Rammasun's cloud top temperatures. The Atmospheric Infrared Sounder gathered temperature data that showed cloud top temperatures exceeded -63F/-52C over the northern and central Philippines and in a band of thunderstorms southeast of the center of circulation over the Philippine Sea.

Cloud top temperatures that cold indicate cloud tops high into the troposphere with the potential to produce heavy rainfall. That heavy rainfall was confirmed by NASA's TRMM satellite measurement just 49 minutes earlier when that satellite passed over the Philippines.

On July 15 at 0900 UTC (5 a.m. EDT), Typhoon Rammasun's maximum sustained winds were near 100 knots (115.1 mph/185.2 kph). At that time the center of the storm was closing in on the island of Sorsogon, Philippines. It was centered near 13.2 north latitude and 124.1 east longitude, also about 236 nautical miles (271.6 miles/437.1 km) southeast of Manila. Rammasun is moving to the northwest at 9 knots (10.3 mph/16.6 kph) and is forecast to pass close to Manila early on July 16 (UTC).

The Joint Typhoon Warning Center forecasters expect Rammasun to weaken moving over the Philippines and then re-intensify after re-emerging over the South China Sea because of the warm sea surface temperatures there. Rammasun is expected to be a typhoon when it makes a second landfall over northern Hainan Island, China on July 18 before a final landfall in northern Vietnam.

Text credit:  Rob Gutro
NASA's Goddard Space Flight Center

Rob Gutro | Eurek Alert!

Further reports about: EDT MODIS NASA Philippines TRMM Typhoon UTC knots rainfall satellite temperatures troposphere

More articles from Earth Sciences:

nachricht A new dead zone in the Indian Ocean could impact future marine nutrient balance
06.12.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>