Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Sees Typhoon Rammasun's Eye Staring at Visayas, Philippines

16.07.2014

Early on July 15, Typhoon Rammasun began making landfall in the eastern part of the central Philippines and NASA's Aqua and TRMM satellites spotted the 20 nautical-mile-wide (23 mile/37 km) eye of the storm close to landfall.

Typhoon Rammasun was making landfall in the Visayas region. Visayas is located in the central Philippines.


TRMM satellite passed over Rammasun on July 15 at 12:10 a.m. EDT and found moderate rainfall (35 mm/1.4 in/hr) around the center and moderate to heavy rainfall (50 mm/2 in/hr) over the central and northern Philippines.

Image Credit: SSAI/NASA, Hal Pierce

The Tropical Rainfall Measuring Mission or TRMM satellite passed over Rammasun on Tuesday, July 15, 2014 at 04:10 UTC (12:10 a.m. EDT) and measured rainfall occurring throughout the storm.

TRMM found moderate rainfall (about 35 mm)/1.4 inches per hour) around the center of circulation and moderate to heavy rainfall (50 mm/2 inches per hour) over the central and northern Philippines in the western quadrant of Rammasun.

When NASA's Aqua satellite flew over Typhoon Rammasun on July 15 at 05:00 UTC (1 a.m. EDT) the Moderate Resolution Imaging Spectroradiometer instrument known as MODIS took a visible image of the storm.

The MODIS image showed Rammasun's eye just east of the Visayas region. Rammasun's clouds stretched over the entire country and west into the South China Sea.

Another instrument aboard Aqua took an infrared picture of Rammasun's cloud top temperatures. The Atmospheric Infrared Sounder gathered temperature data that showed cloud top temperatures exceeded -63F/-52C over the northern and central Philippines and in a band of thunderstorms southeast of the center of circulation over the Philippine Sea.

Cloud top temperatures that cold indicate cloud tops high into the troposphere with the potential to produce heavy rainfall. That heavy rainfall was confirmed by NASA's TRMM satellite measurement just 49 minutes earlier when that satellite passed over the Philippines.

On July 15 at 0900 UTC (5 a.m. EDT), Typhoon Rammasun's maximum sustained winds were near 100 knots (115.1 mph/185.2 kph). At that time the center of the storm was closing in on the island of Sorsogon, Philippines. It was centered near 13.2 north latitude and 124.1 east longitude, also about 236 nautical miles (271.6 miles/437.1 km) southeast of Manila. Rammasun is moving to the northwest at 9 knots (10.3 mph/16.6 kph) and is forecast to pass close to Manila early on July 16 (UTC).

The Joint Typhoon Warning Center forecasters expect Rammasun to weaken moving over the Philippines and then re-intensify after re-emerging over the South China Sea because of the warm sea surface temperatures there. Rammasun is expected to be a typhoon when it makes a second landfall over northern Hainan Island, China on July 18 before a final landfall in northern Vietnam.

Text credit:  Rob Gutro
NASA's Goddard Space Flight Center

Rob Gutro | Eurek Alert!

Further reports about: EDT MODIS NASA Philippines TRMM Typhoon UTC knots rainfall satellite temperatures troposphere

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA examines Peru's deadly rainfall

24.03.2017 | Earth Sciences

What does congenital Zika syndrome look like?

24.03.2017 | Health and Medicine

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>