Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's TRMM satellite sees birth of Arabian Sea cyclone

25.10.2012
NASA's TRMM satellite measured rainfall and towering clouds within the Arabian Sea's first tropical cyclone of the season as it passed overhead from space. Meanwhile, the infrared AIRS instrument aboard NASA's Aqua satellite noticed that strong thunderstorms surrounded the center of the storm. Tropical Cyclone 1A is expected to be short-lived as it heads for a landfall in Somalia on Oct. 25.

Since it was launched in 1997 the Tropical Rainfall Measuring Mission (TRMM) satellite has been useful for monitoring tropical cyclones in the tropics. TRMM passed above the first tropical cyclone of 2012 (TC01A) as it was forming in the Arabian Sea on October 2012 at 1513 UTC (11:13 a.m. EDT). Rainfall from TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) were overlaid on an enhanced infrared image from TRMM's Visible and InfraRed Scanner (VIRS) to provide a complete picture of rainfall rates occurring within the storm.


TRMM passed above the first tropical cyclone of 2012 as it was forming in the Arabian Sea on October 2012 at 11:13 a.m. EDT. TRMM saw that rain at the surface was falling at a rate of up to 41 mm/hour (~1.6 inches) and thunderstorms within were reaching heights of over 16 km (~9.9 miles).

Credit: SSAI/NASA, Hal Pierce

TRMM PR and TMI data showed that rain at the surface was falling at a rate of up to 41 mm/hour (~1.6 inches) in the forming tropical cyclone. Bands of thunderstorms were also wrapping tightly into a well-defined low level center of circulation. TRMM PR data also was also used to create a 3-D image that showed the vertical structure of convective storms in the area. The view showed some towering convective storms were reaching heights of over 16 km (~9.9 miles).

Another satellite passed over TC01A and captured infrared data on the storm, revealing temperature of cloud tops. The colder the cloud top, the higher the thunderstorm is in the atmosphere, and the more powerful the storm. The Atmospheric Infrared Sounder (AIRS) instrument aboard NASA's Aqua satellite captured infrared imagery of Tropical Storm 01A on Oct. 24 at 5:35 a.m. EDT (0935 UTC) that showed the strongest thunderstorms surrounded the center of circulation. Those thunderstorms were reaching high into the troposphere where cloud top temperatures are as cold as -63 Fahrenheit (-52 Celsius).

On Oct. 24 at 1500 UTC (11 a.m. EDT), TC01A had maximum sustained winds near 35 knots (~40 mph). It was located about 300 nautical miles east-southeast of Cape Guardafui, Somalia, near 10.4 North latitude and 55.7 East longitude. TC01A was moving to the west at 16 knots and is expected to move to the west-southwest over the next couple of days before making landfall south of Cape Guardafui, Somalia. Cape Guardafui is located in the northeastern Bari province and forms the geographical point of the Horn of Africa.

Tropical cyclone 01A is predicted by the U.S. Navy Joint Typhoon Warning Center (JTWC) to hit northeastern Somalia on October 25, 2012 with wind speeds of about 35 knots (~40 mph).

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>