Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Montana State research sheds light on South Pole dinosaurs

Dog-sized dinosaurs that lived near the South Pole, sometimes in the dark for months at a time, had bone tissue very similar to dinosaurs that lived everywhere on the planet, according to a doctoral candidate at Montana State University.

That surprising fact falsifies a 13-year-old study and may help explain why dinosaurs were able to dominate the planet for 160 million years, said Holly Woodward, MSU graduate student in the Department of Earth Sciences and co-author of a paper published Aug. 3 in the journal "PLoS ONE."

"If we were trying to find evidence of dinosaurs doing something much different physiologically, we would expect it to be found in dinosaurs from an extreme environment such as the South Pole," Woodward said. "But based on bone tissues, dinosaurs living within the Antarctic Circle were physiologically similar to dinosaurs living everywhere else.

"This tells us something very interesting; that basically from the very start, early dinosaurs, or even the ancestors of dinosaurs, evolved a physiology that allowed an entire group of animals to successfully exploit a multitude of environmental conditions for millions of years," Woodward said.

Jack Horner, Woodward's adviser and Regents Professor of Paleontology/Curator of Paleontology at MSU's Museum of the Rockies, said Woodward's findings are consistent with other results from the museum's histology lab.

"I think the most important finding is that polar dinosaurs don't seem to be any different than any other dinosaurs in respect to how their bones grew," Horner said. "Dinosaurs have annual growth lines and those that don't have them are simply not yet a year old."

Woodward said she conducted her research after reading a 1998 study about polar dinosaurs. Intrigued by the study, she decided to review the findings and received a National Science Foundation grant that allowed her to travel to Australia last summer, set up a histology laboratory and analyze bones in a rare collection in Australia's Melbourne Museum.

Woodward analyzed the bone tissue of 17 dinosaurs that lived 112 to 100 million years ago during the latter part of the Early Cretaceous Period. All but one of the dinosaurs in her study were plant eaters. All lived in the Antarctic Circle in what is now known as the Australian state of Victoria.

Also participating in the study were the authors of the original study: Anusuya Chinsamy at the University of Cape Town in South Africa, Tom Rich at the Melbourne Museum and Patricia Vickers-Rich at Monash University in Australia.

The three scientists who conducted the original study welcomed her analysis and didn't mind that she falsified their hypothesis, Woodward said. She added that the new study looked at more dinosaur bones than the original study because more bones from the polar dinosaurs were available. Paleontologists have been adding to the collection over the past 25 to 30 years.

The original study looked at the bone microstructure of the polar dinosaurs and concluded that the differences they saw indicated that some dinosaurs survived harsh polar conditions by hibernating, while others evolved in a way that allowed them to be active year-round, Woodward said.

The new study showed that all but the youngest dinosaurs had "Lines of Arrested Growth" or LAGs, Woodward said. Since the hibernation hypothesis was based on the presence or absence of LAGs, the new study falsified the hypothesis.

LAGSs, in a bone cross section, look like tree rings, Woodward said. Like tree rings, they are formed when growth temporarily stops.

"Research on animals living today suggests that LAGs form annually, regardless of latitude or climate," Woodward said. "Like tree rings, LAGs can be counted to age an animal, so that the absence of these marks likely indicates a dinosaur was less than a year old. These marks have also been found in dinosaurs that lived at much lower latitudes having no need to hibernate."

The new study doesn't mean there was nothing unique about polar dinosaurs, but those qualities aren't apparent in bone tissue, Woodward said.

"It is very likely that dinosaurs living in different environments evolved specific adaptations – either physical or behavioral – to cope with environmental conditions," she said. "Analysis of bone microstructure can tell us a great deal about growth, but some things just aren't recorded in bone tissue."

Evelyn Boswell | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>