Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global ocean currents explain why Northern Hemisphere is the soggier one

21.10.2013
A quick glance at a world precipitation map shows that most tropical rain falls in the Northern Hemisphere.

The Palmyra Atoll, at 6 degrees north, gets 175 inches of rain a year, while an equal distance on the opposite side of the equator gets only 45 inches. Scientists long believed that this was a quirk of the Earth's geometry – that the ocean basins tilting diagonally while the planet spins pushed tropical rain bands north of the equator. But a new University of Washington study shows that the pattern arises from ocean currents originating from the poles, thousands of miles away.


At the left is observations of average annual precipitation. The right is simulated precipitation with ocean conveyor-belt circulation turned off.

Credit: D. Frierson, UW

The findings, published Oct. 20 in Nature Geoscience, explain a fundamental feature of the planet's climate, and show that icy waters affect seasonal rains that are crucial for growing crops in such places as Africa's Sahel region and southern India.

In general, hotter places are wetter because hot air rises and moisture precipitates out.

"It rains more in the Northern Hemisphere because it's warmer," said corresponding author Dargan Frierson, a UW associate professor of atmospheric sciences. "The question is: What makes the Northern Hemisphere warmer? And we've found that it's the ocean circulation."

Frierson and his co-authors first used detailed measurements from NASA's Clouds and Earth's Radiant Energy System, or CERES, satellites to show that sunlight actually provides more heat to the Southern Hemisphere – and so, by atmospheric radiation alone, the Southern Hemisphere should be the soggier one.

After using other observations to calculate the ocean heat transport, the authors next used computer models to show the key role of the huge conveyor-belt current that sinks near Greenland, travels along the ocean bottom to Antarctica, and then rises and flows north along the surface. Eliminating this current flips the tropical rain bands to the south.

The reason is that as the water moves north over many decades it gradually heats up, carrying some 400 trillion (that's four with 14 zeroes after it) watts of power across the equator.

For many years, slanting ocean basins have been the accepted reason for the asymmetry in tropical rainfall.

"But at the same time, a lot of people didn't really believe that explanation because it's kind of a complicated argument. For such a major feature there's usually a simpler explanation," Frierson said.

The ocean current they found to be responsible was made famous in the 2004 movie "The Day After Tomorrow," in which the premise was that the overturning circulation shut down and New York froze over. While a sudden shutdown like in the movie won't happen, a gradual slowing – which the recent United Nations report said was "very likely" by 2100 – could shift tropical rains south, the study suggests, as it probably has in the past.

The slowdown of the currents is predicted because increasing rain and freshwater in the North Atlantic would make the water less dense and less prone to sinking.

"This is really just another part of a big, growing body of evidence that's come out in the last 10 or 15 years showing how important high latitudes are for other parts of the world," Frierson said.

Frierson's earlier work shows how the changing temperature balance between hemispheres influences tropical rainfall. A recent study by Frierson and collaborators looked at how pollution from the industrial revolution blocked sunlight to the Northern Hemisphere in the 1970s and '80s and shifted tropical rains to the south.

"A lot of the changes in the recent past have been due to air pollution," Frierson said. "The future will depend on air pollution and global warming, as well as ocean circulation changes. That makes tropical rainfall particularly hard to predict."

Co-authors of the paper are Yen-Ting Hwang, Elizabeth Maroon, Xiaojuan Liu and David Battisti at the UW; Neven Fuckar at the University of Hawaii; Richard Seager at Columbia University; Sarah Kang at South Korea's Ulsan National Institute of Science and Technology; and Aaron Donohoe at the Massachusetts Institute of Technology.

The research was funded by the National Science Foundation, the Japan Agency for Marine-Earth Science and Technology, the National Aeronautic and Space Administration, the National Oceanic and Atmospheric Administration and the U.S. Department of Defense.

For more information, contact Frierson at 206-685-7364 or dargan@atmos.washington.edu.

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>