Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global ocean currents explain why Northern Hemisphere is the soggier one

21.10.2013
A quick glance at a world precipitation map shows that most tropical rain falls in the Northern Hemisphere.

The Palmyra Atoll, at 6 degrees north, gets 175 inches of rain a year, while an equal distance on the opposite side of the equator gets only 45 inches. Scientists long believed that this was a quirk of the Earth's geometry – that the ocean basins tilting diagonally while the planet spins pushed tropical rain bands north of the equator. But a new University of Washington study shows that the pattern arises from ocean currents originating from the poles, thousands of miles away.


At the left is observations of average annual precipitation. The right is simulated precipitation with ocean conveyor-belt circulation turned off.

Credit: D. Frierson, UW

The findings, published Oct. 20 in Nature Geoscience, explain a fundamental feature of the planet's climate, and show that icy waters affect seasonal rains that are crucial for growing crops in such places as Africa's Sahel region and southern India.

In general, hotter places are wetter because hot air rises and moisture precipitates out.

"It rains more in the Northern Hemisphere because it's warmer," said corresponding author Dargan Frierson, a UW associate professor of atmospheric sciences. "The question is: What makes the Northern Hemisphere warmer? And we've found that it's the ocean circulation."

Frierson and his co-authors first used detailed measurements from NASA's Clouds and Earth's Radiant Energy System, or CERES, satellites to show that sunlight actually provides more heat to the Southern Hemisphere – and so, by atmospheric radiation alone, the Southern Hemisphere should be the soggier one.

After using other observations to calculate the ocean heat transport, the authors next used computer models to show the key role of the huge conveyor-belt current that sinks near Greenland, travels along the ocean bottom to Antarctica, and then rises and flows north along the surface. Eliminating this current flips the tropical rain bands to the south.

The reason is that as the water moves north over many decades it gradually heats up, carrying some 400 trillion (that's four with 14 zeroes after it) watts of power across the equator.

For many years, slanting ocean basins have been the accepted reason for the asymmetry in tropical rainfall.

"But at the same time, a lot of people didn't really believe that explanation because it's kind of a complicated argument. For such a major feature there's usually a simpler explanation," Frierson said.

The ocean current they found to be responsible was made famous in the 2004 movie "The Day After Tomorrow," in which the premise was that the overturning circulation shut down and New York froze over. While a sudden shutdown like in the movie won't happen, a gradual slowing – which the recent United Nations report said was "very likely" by 2100 – could shift tropical rains south, the study suggests, as it probably has in the past.

The slowdown of the currents is predicted because increasing rain and freshwater in the North Atlantic would make the water less dense and less prone to sinking.

"This is really just another part of a big, growing body of evidence that's come out in the last 10 or 15 years showing how important high latitudes are for other parts of the world," Frierson said.

Frierson's earlier work shows how the changing temperature balance between hemispheres influences tropical rainfall. A recent study by Frierson and collaborators looked at how pollution from the industrial revolution blocked sunlight to the Northern Hemisphere in the 1970s and '80s and shifted tropical rains to the south.

"A lot of the changes in the recent past have been due to air pollution," Frierson said. "The future will depend on air pollution and global warming, as well as ocean circulation changes. That makes tropical rainfall particularly hard to predict."

Co-authors of the paper are Yen-Ting Hwang, Elizabeth Maroon, Xiaojuan Liu and David Battisti at the UW; Neven Fuckar at the University of Hawaii; Richard Seager at Columbia University; Sarah Kang at South Korea's Ulsan National Institute of Science and Technology; and Aaron Donohoe at the Massachusetts Institute of Technology.

The research was funded by the National Science Foundation, the Japan Agency for Marine-Earth Science and Technology, the National Aeronautic and Space Administration, the National Oceanic and Atmospheric Administration and the U.S. Department of Defense.

For more information, contact Frierson at 206-685-7364 or dargan@atmos.washington.edu.

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>