Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early initiation of Arctic sea-ice formation

17.07.2009
Arctic sea-ice formation

Significant sea ice formation occurred in the Arctic earlier than previously thought is the conclusion of a study published this week in Nature.

"The results are also especially exciting because they suggest that sea ice formed in the Arctic before it did in Antarctica, which goes against scientific expectation," says scientific team member Dr Richard Pearce of the University of Southampton's School of Ocean and Earth Science based at the National Oceanography Centre, Southampton (NOCS).

The international collaborative research team led by Dr Catherine Stickley and Professor Nalân Koç of the University of Tromsø and Norwegian Polar Insitute (Tromsø) analysed oceanic sediment cores collected from the Lomonosov ridge in the central Arctic by Integrated Ocean Drilling Program Expedition 302 ('ACEX'). Previous analyses of cores drilled in this region revealed ice-rafted debris dating back to the middle Eocene epoch, prompting suggestions that ice appeared in the Arctic about 46 million years ago. But records of ice-rafted debris do not differentiate sea ice from glacial (continental) ice, which is important because sea ice influences climate by directly affecting ocean–atmosphere exchanges, whereas land-based ice affects sea level and consequently ocean acidity.

Instead of focusing solely on ice-rafted debris, Stickley and her colleagues also garner information about ancient climate by analysing fossilised remains of tiny single-celled plants called diatoms in the sediment cores. Today, different living diatom species are adapted to particular environmental conditions. Assuming that this was also true in the past – for which there is ample evidence – the presence of particular diatom species in sediment cores is diagnostic of conditions prevailing at the time.

Coincident with ice-rafted debris in the cores, the researchers found high abundances of delicately silicified diatoms belong to the genus Synedropsis. "We were astonished by this", said team member Richard Pearce of NOCS, who imaged the samples using a scanning electron microscope at the NOCS: "Weakly silicified diatoms are preserved only under exceptional circumstances, so to find fossilised Synedropsis species so well preserved and in such abundance is truly remarkable." In fact, the ACEX Synedropsis species represent the earliest known fossil record of sea-ice diatoms.

The researchers attribute the presence of Synedropsis fossils in these sediments to the presence of sea ice, and silica-enriched waters that favour their preservation. They propose that, like Synedropsis species found in polar regions today, the ACEX species were also sea-ice specialists uniquely adapted for surviving the lengthy polar darkness and freezing temperatures. "These diatoms provide the most compelling evidence for ancient sea ice, as they rely on this medium for their survival," said Catherine Stickley. Moreover, their analysis of quartz grain textural characteristics further supports sea ice as the dominant transporter of ice-rafted debris at this time.

"It is likely that sea ice formed in autumn and winter and melted in spring and summer, as seasonal sea ice does today," they say. Synedropsis species probably over-wintered within the sea ice and then bloomed there in the spring when there was enough sunlight. They would have been released into stratified surface waters as the ice melted, rapidly sinking to the sea bottom as aggregates, leaving other diatom species to dominate summer production. And, indeed, these seasonal changes can be discerned in the sediment cores.

The researchers conclude from their analysis, which cover a two-million year period, that episodic sea ice formation in marginal shelf areas of the Arctic started around 47.5 million years ago, about a million years earlier than previous estimates based on ice-raft debris evidence only. This appears to have been followed half a million years later by the onset of seasonal sea-ice formation in offshore areas of the central Arctic, and about 24 million years before major ice-sheet expansion in the region.

The findings have potentially important implications for climate. Spring sea ice and summer cloud formation would have reduced oceanic heat loss to the atmosphere and increased the amount of solar radiation reflected back out into space. "A stable sea-ice regime also suggests the possibility of concomitant glacial ice," say the researchers, and indeed they find some evidence for the presence of small isolated glaciers at the time.

Furthermore, their data indicate that sea ice formed in the Arctic before it did in Antarctica. Atmospheric levels of the greenhouse gas carbon dioxide were declining in the middle Eocene, one of the reasons postulated in causing the Earth to cool. However, the new findings imply that the threshold for sea-ice formation was first crossed in the Arctic, which, say the authors, is "a hypothesis opposite to that modelled for glacial ice, whereby Antarctica is shown to glaciate much earlier (that is, at higher levels of carbon dioxide) than circum-Arctic continents."

Contact information:

For more information contact the NOCS Press Officer Rory Howlett on +44 (0)23 8059 8490 Email: r.howlett@noc.soton.ac.uk

Images are available from the NOCS Press Office (Tel. 02380596100).

Author contacts:

Dr Richard Pearce: Telephone +00 44 23 8059 6477 or +00 44 23 8059 6518; Email r.pearce@noc.soton.ac.uk

Notes to Editors:

The paper, 'Evidence for middle Eocene Arctic sea ice from diatoms and ice-rafted debris', is published by Nature on 16 July 2009.

This research used samples and data provided by the Integrated Ocean Drilling Program (IODP) and was supported by VISTA (Norwegian Academy of Science and Letters and StatoilHydro) and the Research Council of Norway.

The authors are: Catherine Stickley (University of Tromsø and Norwegian Polar Institute), Kristen St John (James Madison University), Nalân Koc (U. Tromsø and NPI),, Richard Jordan (Yamagata University), Sandra Passchier (Montclair State University), Richard Pearce (National Oceanography Centre, Southampton) & Lance Kearns (JMU).

The National Oceanography Centre, Southampton is the UK's focus for ocean science. It is one of the world's leading institutions devoted to research, teaching and technology development in ocean and earth science. Over 500 research scientists, lecturing, support and seagoing staff are based at the centre's purpose-built waterside campus in Southampton along with over 700 undergraduate and postgraduate students.

The National Oceanography Centre, Southampton is a collaboration between the University of Southampton and the Natural Environment Research Council. The NERC royal research ships RRS James Cook and RRS Discovery are based at NOCS as is the National Marine Equipment Pool which includes Autosub and Isis, two of the world's deepest diving research vehicles.

Dr. Rory Howlett | EurekAlert!
Further information:
http://www.soton.ac.uk

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>