Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early initiation of Arctic sea-ice formation

17.07.2009
Arctic sea-ice formation

Significant sea ice formation occurred in the Arctic earlier than previously thought is the conclusion of a study published this week in Nature.

"The results are also especially exciting because they suggest that sea ice formed in the Arctic before it did in Antarctica, which goes against scientific expectation," says scientific team member Dr Richard Pearce of the University of Southampton's School of Ocean and Earth Science based at the National Oceanography Centre, Southampton (NOCS).

The international collaborative research team led by Dr Catherine Stickley and Professor Nalân Koç of the University of Tromsø and Norwegian Polar Insitute (Tromsø) analysed oceanic sediment cores collected from the Lomonosov ridge in the central Arctic by Integrated Ocean Drilling Program Expedition 302 ('ACEX'). Previous analyses of cores drilled in this region revealed ice-rafted debris dating back to the middle Eocene epoch, prompting suggestions that ice appeared in the Arctic about 46 million years ago. But records of ice-rafted debris do not differentiate sea ice from glacial (continental) ice, which is important because sea ice influences climate by directly affecting ocean–atmosphere exchanges, whereas land-based ice affects sea level and consequently ocean acidity.

Instead of focusing solely on ice-rafted debris, Stickley and her colleagues also garner information about ancient climate by analysing fossilised remains of tiny single-celled plants called diatoms in the sediment cores. Today, different living diatom species are adapted to particular environmental conditions. Assuming that this was also true in the past – for which there is ample evidence – the presence of particular diatom species in sediment cores is diagnostic of conditions prevailing at the time.

Coincident with ice-rafted debris in the cores, the researchers found high abundances of delicately silicified diatoms belong to the genus Synedropsis. "We were astonished by this", said team member Richard Pearce of NOCS, who imaged the samples using a scanning electron microscope at the NOCS: "Weakly silicified diatoms are preserved only under exceptional circumstances, so to find fossilised Synedropsis species so well preserved and in such abundance is truly remarkable." In fact, the ACEX Synedropsis species represent the earliest known fossil record of sea-ice diatoms.

The researchers attribute the presence of Synedropsis fossils in these sediments to the presence of sea ice, and silica-enriched waters that favour their preservation. They propose that, like Synedropsis species found in polar regions today, the ACEX species were also sea-ice specialists uniquely adapted for surviving the lengthy polar darkness and freezing temperatures. "These diatoms provide the most compelling evidence for ancient sea ice, as they rely on this medium for their survival," said Catherine Stickley. Moreover, their analysis of quartz grain textural characteristics further supports sea ice as the dominant transporter of ice-rafted debris at this time.

"It is likely that sea ice formed in autumn and winter and melted in spring and summer, as seasonal sea ice does today," they say. Synedropsis species probably over-wintered within the sea ice and then bloomed there in the spring when there was enough sunlight. They would have been released into stratified surface waters as the ice melted, rapidly sinking to the sea bottom as aggregates, leaving other diatom species to dominate summer production. And, indeed, these seasonal changes can be discerned in the sediment cores.

The researchers conclude from their analysis, which cover a two-million year period, that episodic sea ice formation in marginal shelf areas of the Arctic started around 47.5 million years ago, about a million years earlier than previous estimates based on ice-raft debris evidence only. This appears to have been followed half a million years later by the onset of seasonal sea-ice formation in offshore areas of the central Arctic, and about 24 million years before major ice-sheet expansion in the region.

The findings have potentially important implications for climate. Spring sea ice and summer cloud formation would have reduced oceanic heat loss to the atmosphere and increased the amount of solar radiation reflected back out into space. "A stable sea-ice regime also suggests the possibility of concomitant glacial ice," say the researchers, and indeed they find some evidence for the presence of small isolated glaciers at the time.

Furthermore, their data indicate that sea ice formed in the Arctic before it did in Antarctica. Atmospheric levels of the greenhouse gas carbon dioxide were declining in the middle Eocene, one of the reasons postulated in causing the Earth to cool. However, the new findings imply that the threshold for sea-ice formation was first crossed in the Arctic, which, say the authors, is "a hypothesis opposite to that modelled for glacial ice, whereby Antarctica is shown to glaciate much earlier (that is, at higher levels of carbon dioxide) than circum-Arctic continents."

Contact information:

For more information contact the NOCS Press Officer Rory Howlett on +44 (0)23 8059 8490 Email: r.howlett@noc.soton.ac.uk

Images are available from the NOCS Press Office (Tel. 02380596100).

Author contacts:

Dr Richard Pearce: Telephone +00 44 23 8059 6477 or +00 44 23 8059 6518; Email r.pearce@noc.soton.ac.uk

Notes to Editors:

The paper, 'Evidence for middle Eocene Arctic sea ice from diatoms and ice-rafted debris', is published by Nature on 16 July 2009.

This research used samples and data provided by the Integrated Ocean Drilling Program (IODP) and was supported by VISTA (Norwegian Academy of Science and Letters and StatoilHydro) and the Research Council of Norway.

The authors are: Catherine Stickley (University of Tromsø and Norwegian Polar Institute), Kristen St John (James Madison University), Nalân Koc (U. Tromsø and NPI),, Richard Jordan (Yamagata University), Sandra Passchier (Montclair State University), Richard Pearce (National Oceanography Centre, Southampton) & Lance Kearns (JMU).

The National Oceanography Centre, Southampton is the UK's focus for ocean science. It is one of the world's leading institutions devoted to research, teaching and technology development in ocean and earth science. Over 500 research scientists, lecturing, support and seagoing staff are based at the centre's purpose-built waterside campus in Southampton along with over 700 undergraduate and postgraduate students.

The National Oceanography Centre, Southampton is a collaboration between the University of Southampton and the Natural Environment Research Council. The NERC royal research ships RRS James Cook and RRS Discovery are based at NOCS as is the National Marine Equipment Pool which includes Autosub and Isis, two of the world's deepest diving research vehicles.

Dr. Rory Howlett | EurekAlert!
Further information:
http://www.soton.ac.uk

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>