Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drones Aid in Coral Reef Research

10.01.2017

Drones have often been used in civilian applications for filming and photography. However, the use of these unmanned aerial devices for research purposes is still in its infancy. An international team of scientists led by Elisa Casella of the Leibniz Centre for Tropical Marine Research (ZMT) has now developed a method to investigate the condition of coral reefs using drone technology. The researchers’ report about their system has now been published in the journal Coral Reefs.

Drones have often been used in civilian applications for filming and photography. However, the use of these unmanned aerial devices for research purposes is still in its infancy. An international team of scientists led by Elisa Casella of the Leibniz Centre for Tropical Marine Research (ZMT) has now developed a method to investigate the condition of coral reefs using drone technology. The researchers’ report about their system has now been published in the journal Coral Reefs.


Picture of the coral reef off Moorea taken by the drone

Photo: Elisa Casella, Leibniz Centre for Tropical Marine Research


Starting the drone; Moorea

Photo: Alessio Rovere, Leibniz Centre for Tropical Marine Research

Thanks to the small dimensions and improved steering functions of the devices as well as falling prices, many disciplines can now benefit from the use of drones. They open up entirely new perspectives for ecological research and environmental protection. For example, drones are already being used for mapping hard-to-reach areas or for the inventory of endangered animal species.

So far, drones have seldom been used to map marine ecosystems. However, the bird’s eye view offers great advantages. Image data can be captured for a large surface area of a coral reef with its structural characteristics where divers would otherwise have to spend days collecting data under water.

In Moorea, an island in the South Pacific that belongs to French Polynesia, the ZMT researchers tested their method in a shallow coral reef, in collaboration with colleagues from the Centre de Recherches Insulaires et Observatoire de l’Environnement, Moorea (CRIOBE). From a small boat they remotely steered a quadcopter drone equipped with a small camera in the direction of the reef. The small unmanned aerial vehicle flew over the ecosystem at an altitude of 30 meters. Every two seconds, the camera shot images from different positions. In the end the drone survey yielded more than 300 aerial photographs. On the basis of these data and by means of special software, the researchers created a 3D reconstruction of the coral reef.

“The detail accuracy of the images is astonishing,” said Elisa Casella. “We can even distinguish between different coral types. Satellite images, by contrast, have a much lower resolution.” The researchers were also able to cope with typical problems such as strong light reflections and optical distortions that occur at the air-water interface. “We went by boat on windless days into the reef and took the images when the sun was low in the horizon,” said Casella.

"This is a very elegant and time-saving method to get an impression of the condition and structure of a coral reef," said Sebastian Ferse, reef ecologist at the ZMT and co-author of the study. “If a reef has a very complex structure, it offers many different niches for its inhabitants, and the biomass there is correspondingly high.” The remote-controlled camera also provides information on how much a reef has been damaged by coral bleaching or dynamite fishing.

In the future, Ferse plans to use drones for his reef research in Indonesia. In addition, in certain areas of the reef, video cameras shall record the diversity of species and the behaviour of the reef fish. He wants to determine the so-called tipping point – when a reef structure becomes so damaged that the biodiversity decreases significantly. This information is essential to manage the reef or to establish protected areas.

Following this research, Elisa Casella will team up with the Sea Level and Coastal Changes group and with the Mangrove Ecology group of the ZMT to investigate the possibility to use drones for the multispectral mapping of mangroves in Fiji. The team wants to understand up to which point drones have an advantage over satellite imagery in providing data for environmental management.

Publication:
Casella, E., Collin, A., Harris, D., Ferse, S., Bejarano, S., Parravicini, V., Hench, J.L., Rovere, A., (2016, online first). Mapping coral reefs using consumer-grade drones and structure from motion photogrammetry techniques. Coral Reefs. DOI: 10.1007/s00338-016-1522-0.

Contact
Application of method in coral reef ecology
Dr. Sebastian Ferse
Leibniz Centre for Tropical Marine Research
Tel: 0421 / 23800-28
sebastian.ferse@leibniz-zmt.de

Method and technical details
Elisa Casella / Alessio Rovere (Interview only in Englisch)
Leibniz Centre for Tropical Marine Research
Tel. E. Casella: 0421 / 23800-56
Tel. A. Rovere: 0421 / 218 65771
elisa.casella@leibniz-zmt.de
alessio.rovere@leibniz-zmt.de

PR
Dr. Susanne Eickhoff
Leibniz Centre for Tropical Marine Research
Tel: 0421 – 23800 37
susanne.eickhoff@leibniz-zmt.de

About the Leibniz Centre for Tropical Marine Research
In research and education the Leibniz Centre for Tropical Marine Research (ZMT) in Bremen is dedicated to the better understanding of tropical coastal ecosystems. As an interdisciplinary Leibniz institute the ZMT conducts research on the structure and functioning of tropical coastal ecosystems and their reaction to natural changes and human interactions. It aims to provide a scientific basis for the protection and sustainable use of these ecosystems. The ZMT works in close cooperation with partners in the tropics, where it supports capacity building and the development of infrastructures in the area of sustainable coastal zone management. The ZMT is a member of the Leibniz Association.

Dr. Susanne Eickhoff | idw - Informationsdienst Wissenschaft
Further information:
http://www.leibniz-zmt.de

More articles from Earth Sciences:

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

nachricht NASA spies Tropical Cyclone 08P's formation
23.02.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>