Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Does the central Andean backarc have the potential for a great earthquake?

The region east of the central Andes Mountains has the potential for larger scale earthquakes than previously expected, according to a new study posted online in the May 8th edition of Nature Geoscience.

Previous research had set the maximum expected earthquake size to be magnitude 7.5, based on the relatively quiet history of seismicity in that area. This new study by researchers from the University of Hawaii at Manoa (UHM) and colleagues contradicts that limit and instead suggests that the region could see quakes with magnitudes 8.7 to 8.9.

Benjamin Brooks, Associate Researcher in the Hawaii Institute of Geophysics and Planetology in the School of Ocean and Earth Science and Technology at UHM and colleagues used GPS data to map movement of the Earth's surface in the Subandean margin, along the eastern flank of the Andes Mountains. They report a sharp decrease in surface velocity from west to east. "We relate GPS surface movements to the subsurface via deformation models", says Brooks. "In this case, we use a simple elastic model of slip on a buried dislocation (fault) and do millions of Monte Carlo simulations to determine probability distributions for the model parameters (like slip, width, depth, dip, etc.)."

From these data, the researchers conclude that the shallow section in the east of the region is currently locked in place over a length of about 100 km, allowing stress to build up as the tectonic plates in the region slowly move against each other. Rupture of the entire locked section by one earthquake could result in shaking of magnitudes up to 8.9, they estimate.

This project is a long-term collaborative effort between UHM, Ohio State University, Arizona State University, the Bolivian Instituto Geografico Militar (IGM), the Bolivian Seismological Observatory (Observatorio San Calixto), the Universidad Nacional de Cuyo (Argentina), and University of Memphis. The project's general name is the Central and Southern Andes Project (CAP).

These findings came as a surprise to Brooks. "No one suspected the previous estimates were too low, it was a discovery that came out of my broader interest which is studying the way in which mountains (in this case the Andes) actively grow and deform."

Major Arturo Echalar of the Bolivian IGM says "The findings here are critical in helping us to continue to provide the most up-to-date and accurate information regarding geological hazards in Bolivia."

The researchers are quick to report that the findings only demonstrate the potential for an earthquake of such a size. "It is not yet known if one of that size has ever happened in the Bolivian Subandes," adds Brooks. "Nonetheless we hope that this information will be widely disseminated and considered in Bolivia by the people ( including the general population, engineers, planners, emergency mitigators, policy makers, etc.) who may be most affected by a potential event here."

There are two important steps that the researchers are now undertaking simultaneously to confirm these findings. They are performing paleoseismolgic research to determine dates and sizes of past earthquakes, and they will continue to monitor the earthquake zone to see if some of the accumulated strain can be released aseismically, potentially slowing down the time until the next big event. "As we state in the paper, we believe that the Mandeyapecua thrust fault at the mountain front exhibits evidence for past earthquake ruptures", says Brooks. "So by applying techniques like digging trenches and identifying and dating offset layers we'll be able to quantify the seismic past of the region."

This research was funded by the National Science Foundation.

With information from Rachel Twinn, Nature Press Office

Nature Geoscience: Orogenic-wedge deformation and potential for great earthquakes in the central Andean backarc DOI: 10.1038/ngeo1143

Research Contact: Ben Brooks, Director Pacific GPS Facility, Hawai`i Institute of Geophysics and Planetology, University of Hawai`i at Manoa,, 808-228-8356

SOEST Media Contact: Tara Hicks Johnson, (808) 956-3151,

Tara Hicks Johnson | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>