Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Does the central Andean backarc have the potential for a great earthquake?

09.05.2011
The region east of the central Andes Mountains has the potential for larger scale earthquakes than previously expected, according to a new study posted online in the May 8th edition of Nature Geoscience.

Previous research had set the maximum expected earthquake size to be magnitude 7.5, based on the relatively quiet history of seismicity in that area. This new study by researchers from the University of Hawaii at Manoa (UHM) and colleagues contradicts that limit and instead suggests that the region could see quakes with magnitudes 8.7 to 8.9.

Benjamin Brooks, Associate Researcher in the Hawaii Institute of Geophysics and Planetology in the School of Ocean and Earth Science and Technology at UHM and colleagues used GPS data to map movement of the Earth's surface in the Subandean margin, along the eastern flank of the Andes Mountains. They report a sharp decrease in surface velocity from west to east. "We relate GPS surface movements to the subsurface via deformation models", says Brooks. "In this case, we use a simple elastic model of slip on a buried dislocation (fault) and do millions of Monte Carlo simulations to determine probability distributions for the model parameters (like slip, width, depth, dip, etc.)."

From these data, the researchers conclude that the shallow section in the east of the region is currently locked in place over a length of about 100 km, allowing stress to build up as the tectonic plates in the region slowly move against each other. Rupture of the entire locked section by one earthquake could result in shaking of magnitudes up to 8.9, they estimate.

This project is a long-term collaborative effort between UHM, Ohio State University, Arizona State University, the Bolivian Instituto Geografico Militar (IGM), the Bolivian Seismological Observatory (Observatorio San Calixto), the Universidad Nacional de Cuyo (Argentina), and University of Memphis. The project's general name is the Central and Southern Andes Project (CAP).

These findings came as a surprise to Brooks. "No one suspected the previous estimates were too low, it was a discovery that came out of my broader interest which is studying the way in which mountains (in this case the Andes) actively grow and deform."

Major Arturo Echalar of the Bolivian IGM says "The findings here are critical in helping us to continue to provide the most up-to-date and accurate information regarding geological hazards in Bolivia."

The researchers are quick to report that the findings only demonstrate the potential for an earthquake of such a size. "It is not yet known if one of that size has ever happened in the Bolivian Subandes," adds Brooks. "Nonetheless we hope that this information will be widely disseminated and considered in Bolivia by the people ( including the general population, engineers, planners, emergency mitigators, policy makers, etc.) who may be most affected by a potential event here."

There are two important steps that the researchers are now undertaking simultaneously to confirm these findings. They are performing paleoseismolgic research to determine dates and sizes of past earthquakes, and they will continue to monitor the earthquake zone to see if some of the accumulated strain can be released aseismically, potentially slowing down the time until the next big event. "As we state in the paper, we believe that the Mandeyapecua thrust fault at the mountain front exhibits evidence for past earthquake ruptures", says Brooks. "So by applying techniques like digging trenches and identifying and dating offset layers we'll be able to quantify the seismic past of the region."

This research was funded by the National Science Foundation.

With information from Rachel Twinn, Nature Press Office

Nature Geoscience: Orogenic-wedge deformation and potential for great earthquakes in the central Andean backarc DOI: 10.1038/ngeo1143

Research Contact: Ben Brooks, Director Pacific GPS Facility, Hawai`i Institute of Geophysics and Planetology, University of Hawai`i at Manoa, bbrooks@hawaii.edu, 808-228-8356

SOEST Media Contact: Tara Hicks Johnson, (808) 956-3151, hickst@hawaii.edu

Tara Hicks Johnson | EurekAlert!
Further information:
http://www.hawaii.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>