Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Arctic cyclones more common than previously thought

Weather data at the Ohio Supercomputer Center reveals in new study hundreds of smaller storms that had previously escaped detection

From 2000 to 2010, about 1,900 cyclones churned across the top of the world each year, leaving warm water and air in their wakes – and melting sea ice in the Arctic Ocean.

That’s about 40 percent more of these Arctic storms than previously thought, according to a new study of vast troves of weather data that previously were synthesized at the Ohio Supercomputer Center (OSC).

A 40 percent difference in the number of cyclones could be important to anyone who lives north of 55 degrees latitude – the area of the study, which includes the northern reaches of Canada, Scandinavia and Russia, along with the state of Alaska.

The finding is also important to researchers who want to get a clear picture of current weather patterns, and a better understanding of potential climate change in the future, explained David Bromwich, Ph.D., professor of geography at The Ohio State University and senior research scientist at the Byrd Polar Research Center.

The cyclone study was presented at the American Geophysical Union meeting in December, in a poster co-authored by his colleagues Natalia Tilinina and Sergey Gulev of the Russian Academy of Sciences and Moscow State University.

BromwichIMG_6427.jpg“We now know there were more cyclones than previously thought, simply because we’ve gotten better at detecting them,” said Bromwich, who amassed the weather database and consulted on the cyclone study.

Cyclones are zones of low atmospheric pressure that have wind circulating around them. They can form over land or water, and go by different names depending on their size and where they are located. In Columbus, Ohio, for instance, a low-pressure system in December would simply be called a winter storm. Extreme low-pressure systems formed in the tropical waters can be called hurricanes or typhoons.

How could anyone miss a storm as big as a cyclone? You might think they are easy to detect, but as it turns out, many of the cyclones that were missed were small in size and short in duration, or occurred in unpopulated areas. Yet researchers need to know about all the storms that have occurred if they are to get a complete picture of storm trends in the region.

“We can’t yet tell if the number of cyclones is increasing or decreasing, because that would take a multi-decade view. We do know that, since 2000, there have been a lot of rapid changes in the Arctic – Greenland ice melting, tundra thawing – so we can say that we’re capturing a good view of what’s happening in the Arctic during the current time of rapid changes,” Bromwich said.

Bromwich leads the Arctic System Reanalysis (ASR) collaboration, which uses statistics and computer algorithms to combine and re-examine diverse sources of historical weather information, such as satellite imagery, weather balloons, buoys and weather stations on the ground. ASR provides researchers with high-resolution information against which researchers can validate climate prediction tools.

“There is actually so much information, it’s hard to know what to do with it all. Each piece of data tells a different part of the story – temperature, air pressure, wind – and we try to take all of these data and blend them together in a coherent way,” Bromwich said.

To generate the complex visualizations, the ASR group accessed thousands of cores on OSC’s HP-Intel Xeon “Oakley Cluster” and IBM 1350 Opteron “Glenn Cluster” over the last few years to run the complex Polar Weather Research and Forecasting model (Polar WRF). Polar WRF was created by the Polar Meteorology Group of the Byrd Polar Research Center at Ohio State and is a modification of the Weather Research and Forecasting model widely used by researchers and most federal agencies.

The ASR group analyzed 17 surface variables, 71 forecast surface variables, 13 forecast upper air variables and 3 soil variables. The data accumulated for and generated by the model filled hundreds of terabytes of disk space on the center’s IBM Mass Storage System. The combined data are made publicly available to scientists.

Natalia TilininaTwo such scientists are cyclone experts Tilinina and Gulev, who worked with Bromwich to look for evidence of telltale changes in wind direction and air pressure in the ASR data. They compared the results to three other data re-analysis groups, all of which combine global weather data.

“We found that ASR provides a new vision of the cyclone activity in high latitudes, showing that the Arctic is much more densely populated with cyclones than was suggested by the global re-analyses,” Tilinina said.

One global data set used for comparison was ERA-Interim, which is generated by the European Centre for Medium-Range Weather Forecasts. Focusing on ERA-Interim data for latitudes north of 55 degrees, Tilinina and Gulev identified more than 1,200 cyclones per year between 2000 and 2010. For the same time period, ASR data yielded more than 1,900 cyclones per year.

Sergey GulevWhen they narrowed their search to cyclones that occurred directly over the Arctic Ocean, they found more than 200 per year in ERA-Interim, and a little more than 300 per year in ASR.

There was good agreement between all the data sets when it came to big cyclones, the researchers found, but the Arctic-centered ASR appeared to catch smaller, shorter-lived cyclones that escaped detection in the larger, global data sets. The ASR data also provided more detail on the biggest cyclones, capturing the very beginning of the storms earlier and tracking their decay longer.

Extreme Arctic cyclones are of special concern to climate scientists because they melt sea ice, Bromwich said.

“When a cyclone goes over water, it mixes the water up. In the tropical latitudes, surface water is warm, and hurricanes churn cold water from the deep up to the surface. In the Arctic, it’s the exact opposite: there’s warmer water below, and the cyclone churns that warm water up to the surface, so the ice melts.”

As an example, he cited the especially large cyclone that hit the Arctic in August 2012, which scientists believe played a significant role in the record retreat of sea ice that year.

ASR is a collaborative effort involving Ohio State, the National Center for Atmospheric Research, the University of Illinois at Urbana-Champaign and the University of Colorado-Boulder. It is funded by the National Science Foundation as an International Polar Year project.

Editor’s Note: Most of this release was authored by Pam Frost Gorder of Research and Innovation Communications at The Ohio State University: (614) 292-9475;

Jamie Abel | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Oasis of life in the ice-covered central Arctic
24.10.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>