Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic cyclones more common than previously thought

17.01.2014
Weather data at the Ohio Supercomputer Center reveals in new study hundreds of smaller storms that had previously escaped detection

From 2000 to 2010, about 1,900 cyclones churned across the top of the world each year, leaving warm water and air in their wakes – and melting sea ice in the Arctic Ocean.

That’s about 40 percent more of these Arctic storms than previously thought, according to a new study of vast troves of weather data that previously were synthesized at the Ohio Supercomputer Center (OSC).

A 40 percent difference in the number of cyclones could be important to anyone who lives north of 55 degrees latitude – the area of the study, which includes the northern reaches of Canada, Scandinavia and Russia, along with the state of Alaska.

The finding is also important to researchers who want to get a clear picture of current weather patterns, and a better understanding of potential climate change in the future, explained David Bromwich, Ph.D., professor of geography at The Ohio State University and senior research scientist at the Byrd Polar Research Center.

The cyclone study was presented at the American Geophysical Union meeting in December, in a poster co-authored by his colleagues Natalia Tilinina and Sergey Gulev of the Russian Academy of Sciences and Moscow State University.

BromwichIMG_6427.jpg“We now know there were more cyclones than previously thought, simply because we’ve gotten better at detecting them,” said Bromwich, who amassed the weather database and consulted on the cyclone study.

Cyclones are zones of low atmospheric pressure that have wind circulating around them. They can form over land or water, and go by different names depending on their size and where they are located. In Columbus, Ohio, for instance, a low-pressure system in December would simply be called a winter storm. Extreme low-pressure systems formed in the tropical waters can be called hurricanes or typhoons.

How could anyone miss a storm as big as a cyclone? You might think they are easy to detect, but as it turns out, many of the cyclones that were missed were small in size and short in duration, or occurred in unpopulated areas. Yet researchers need to know about all the storms that have occurred if they are to get a complete picture of storm trends in the region.

“We can’t yet tell if the number of cyclones is increasing or decreasing, because that would take a multi-decade view. We do know that, since 2000, there have been a lot of rapid changes in the Arctic – Greenland ice melting, tundra thawing – so we can say that we’re capturing a good view of what’s happening in the Arctic during the current time of rapid changes,” Bromwich said.

Bromwich leads the Arctic System Reanalysis (ASR) collaboration, which uses statistics and computer algorithms to combine and re-examine diverse sources of historical weather information, such as satellite imagery, weather balloons, buoys and weather stations on the ground. ASR provides researchers with high-resolution information against which researchers can validate climate prediction tools.

“There is actually so much information, it’s hard to know what to do with it all. Each piece of data tells a different part of the story – temperature, air pressure, wind – and we try to take all of these data and blend them together in a coherent way,” Bromwich said.

To generate the complex visualizations, the ASR group accessed thousands of cores on OSC’s HP-Intel Xeon “Oakley Cluster” and IBM 1350 Opteron “Glenn Cluster” over the last few years to run the complex Polar Weather Research and Forecasting model (Polar WRF). Polar WRF was created by the Polar Meteorology Group of the Byrd Polar Research Center at Ohio State and is a modification of the Weather Research and Forecasting model widely used by researchers and most federal agencies.

The ASR group analyzed 17 surface variables, 71 forecast surface variables, 13 forecast upper air variables and 3 soil variables. The data accumulated for and generated by the model filled hundreds of terabytes of disk space on the center’s IBM Mass Storage System. The combined data are made publicly available to scientists.

Natalia TilininaTwo such scientists are cyclone experts Tilinina and Gulev, who worked with Bromwich to look for evidence of telltale changes in wind direction and air pressure in the ASR data. They compared the results to three other data re-analysis groups, all of which combine global weather data.

“We found that ASR provides a new vision of the cyclone activity in high latitudes, showing that the Arctic is much more densely populated with cyclones than was suggested by the global re-analyses,” Tilinina said.

One global data set used for comparison was ERA-Interim, which is generated by the European Centre for Medium-Range Weather Forecasts. Focusing on ERA-Interim data for latitudes north of 55 degrees, Tilinina and Gulev identified more than 1,200 cyclones per year between 2000 and 2010. For the same time period, ASR data yielded more than 1,900 cyclones per year.

Sergey GulevWhen they narrowed their search to cyclones that occurred directly over the Arctic Ocean, they found more than 200 per year in ERA-Interim, and a little more than 300 per year in ASR.

There was good agreement between all the data sets when it came to big cyclones, the researchers found, but the Arctic-centered ASR appeared to catch smaller, shorter-lived cyclones that escaped detection in the larger, global data sets. The ASR data also provided more detail on the biggest cyclones, capturing the very beginning of the storms earlier and tracking their decay longer.

Extreme Arctic cyclones are of special concern to climate scientists because they melt sea ice, Bromwich said.

“When a cyclone goes over water, it mixes the water up. In the tropical latitudes, surface water is warm, and hurricanes churn cold water from the deep up to the surface. In the Arctic, it’s the exact opposite: there’s warmer water below, and the cyclone churns that warm water up to the surface, so the ice melts.”

As an example, he cited the especially large cyclone that hit the Arctic in August 2012, which scientists believe played a significant role in the record retreat of sea ice that year.

ASR is a collaborative effort involving Ohio State, the National Center for Atmospheric Research, the University of Illinois at Urbana-Champaign and the University of Colorado-Boulder. It is funded by the National Science Foundation as an International Polar Year project.

Editor’s Note: Most of this release was authored by Pam Frost Gorder of Research and Innovation Communications at The Ohio State University: (614) 292-9475; Gorder.1@osu.edu.

Jamie Abel | EurekAlert!
Further information:
http://www.osu.edu

More articles from Earth Sciences:

nachricht First Eastern Pacific tropical depression runs ahead of dawn
29.05.2015 | NASA/Goddard Space Flight Center

nachricht The Arctic: Interglacial period with a break
28.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>