Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Digital communications advance with simple CdS thin films


Amplitude modulator using erbium doped polycrystalline CdS thin films

Demands on digital communications are increasing at an exponential rate. The need for innovative advances in this area means research on optical and electrical properties of CdS thin films are of interest. It is already known that CdS thin films show promise in conversion of energy applications such as for photovoltaic devices and sensors but they may also be suited for other applications. These applications include the use of CdS films for building analog multipliers or amplitude modulators.

The principal purpose of every amplitude, frequency or phase modulator for analog or digital communication systems is to incorporate information to be transmitted (modulating signal) into a carrier signal.

Researchers J. A. Davila-Pintle, O. Portillo-Moreno and E. Molina Flores from Benem¨¦rita Universidad Aut¨®noma de Puebla used a chemical bath deposition process to grow polycrystalline thin films of CdS on glass substrates. During the growth process, relative volumes of nitrate of erbium penta-hydrate (Er(NO3)35H2O) were added in aqueous solution of CdS in order to obtain different levels of doping. The samples obtained by this method were electrically and optically characterized determining the dark conductivity, carrier density, and the photoconductivity in the 590 to 451 nm range respectively.

After optimising the composition for electrical and optical properties, the researchers built an amplitude modulator for digital communications. The system worked successfully demonstrating that it could be used for optoelectronic purposes. Although the data transfer rate was relatively slow (less than 1 kbit¨Msecond), the system developed by J. A. Davila-Pintle et al. had the advantage of being much more simple compared with purely electronic modulators which incorporate non linear devices like diodes, transistors and require electronic filters.

Dr. Ian Birkby | EurekAlert!
Further information:

More articles from Communications Media:

nachricht Product placement: Only brands placed very prominently benefit from 3D technology
07.07.2016 | Alpen-Adria-Universität Klagenfurt

nachricht NASA Goddard network maintains communications from space to ground
02.03.2016 | NASA/Goddard Space Flight Center

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>