Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Semantic descriptors to help the hunt for music

05.01.2006


You like a certain song and want to hear other tracks like it, but don’t know how to find them? Ending the needle-in-a-haystack problem of searching for music on the Internet or even in your own hard drive is a new audio-based music information retrieval system.



Currently under development by the SIMAC project, it is a major leap forward in the application of semantics to audio content, allowing songs to be described not just by artist, title and genre but by their actual musical properties such as rhythm, timbre, harmony, structure and instrumentation. This allows comparisons between songs to be made and listeners to find little-known tracks that suit their tastes but may otherwise go unnoticed.

“The music world is highly commercial and only the works of the biggest artists are really well known and widely promoted,” notes SIMAC project manager Xavier Serra at Barcelona’s Pompeu Fabra University. “Something like 10 per cent of music accounts for 90 per cent of music sales, while the remaining 90 per cent accounts for just 10 per cent of sales – this system could therefore herald a revolution for little-known music and artists.”


Technologically, the project has made significant progress toward bridging the so-called ‘semantic gap’ in audio content. Existing classification systems, such as those used to generate play lists on popular PC media players and MP3 devices, are based on low-level description techniques using text data about the artist, the track, album and genre. Users can find other tracks by the same artist, from the same album or within the same genre but there is no guarantee that the songs will be anything but remotely alike. Alternatively, websites and online stores selling music often provide recommendations to users based on their personal preferences and the past purchases they and other customers have made.

“The ‘since you bought this artist, you might also want to buy this one, as other customers with a similar profile did’ method is not that effective, however, because there may be similar songs out there but if they haven’t been bought that much they won’t appear as a recommendation,” Serra says.

The SIMAC approach, which incorporates machine learning, signal processing and musical knowledge as well as text retrieval, overcomes these problems by using a technique to describe music by its actual properties and characteristics. The musical facets of songs are analysed and the tracks are automatically tagged by an annotator. This then allows them to be organised based on the similarities between them within a music surfer programme.

“The technique represents a major advancement over the existing methods used by audio software,” Serra notes. “It improves the way users can organise, navigate and visualise audio files and how they can interact with music on their audio player, PC or the Internet.”

Another component of the system is a music recommender for users to obtain recommendations that really interest them about new or old songs from online stores. Called FoaFing the Music, it uses not only the musical characteristics of songs to recommend similar ones but also the users’ profile, their past purchasing history and what has been written about the songs in website news and reviews. It is based on the Friend of a Friend (FoaF) concept that draws on information from thousands of machine-readable Web pages via RSS feeds.

The prototype has drawn “positive feedback” from trial users, according to Serra, and commercial interest in the SIMAC project, which ends in March, is high.

“The system offers evident advantages to users in the way they can find and interact with music, and big benefits to artists, producers and the music content industry as a whole,” he notes. “Lesser known artists and small production companies who don’t have big promotional budgets should benefit in particular because it will increase their visibility and the accessibility of their content.”

The system could also be a boon to the software and consumer electronics industries, Serra predicts, noting that there is extensive interest in employing the annotation and music surfing techniques in Internet music sites, PC software and portable devices.

Project partner Philips is currently developing an MP3 player incorporating audio analysis components and one SIMAC component has already been licensed to mSoft, a US company that will use it to search library music to find authorless tracks and sound effects that cannot be categorised using traditional methods.

“Though we were originally planning to set up a spin-off company to exploit the project results, we’re now looking to collaborate with other firms to introduce our technology into existing products and others that are still in development,” Serra says.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/
http://www.semanticaudio.com/

More articles from Communications Media:

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>