Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hearing aid signal not clear? Then switch frequency to FM

26.01.2005


What gives radio better sound can help block out background noise, increase tonal recognition in many hearing devices



There’s a reason why we listen to music on the FM dial of our radios – it just sounds better than it does on AM.

And this reason also holds true for cochlear implants and hearing aids. UC Irvine School of Medicine researchers have found that improving frequency modulation, or FM, reception on cochlear implants and hearing aids may increase the quality of life for the millions of Americans who use these devices.


Dr. Fan-Gang Zeng and his colleagues at UCI and the Peking Union Medical College Hospital in Beijing discovered that enhancing the detection of frequency modulation may significantly boost the performance of many hearing aids and automatic speech recognition devices by separating and blocking out background noise and increasing tonal recognition, which is essential to hearing music and certain spoken languages. Study results appear this week in the early online edition of Proceedings of the National Academy of Sciences.

Some 30 million Americans have some form of hearing loss, and some 4 million of these people benefit from using hearing aids or cochlear implants. But limitation on sound quality and overamplification of background sound can hinder their uses.

“Many hearing-aid – particularly cochlear-implant – users have trouble enjoying music or listening to conversation in a crowded room,” said Zeng, research director of the Hearing and Speech Lab at UCI. “But we’ve found that FM modifications to both existing and future devices may overcome these difficulties.”

Known as a leading expert in cochlear-implant research, Zeng and his colleagues looked into the reasons behind these limitations, specifically focusing on the two parameters of sound: amplitude (the height of a sound wave) and the frequency (the number of sound waves per unit of time).

Thirty-four normal-hearing and 18 cochlear-implant subjects participated in the study. They were tested on three speech-perception tasks known to be notoriously difficult for cochlear-implant users: speech recognition with a competing voice, speaker recognition and Mandarin-tone recognition. The researchers tested the amplitude modulation (AM) and FM from a number of frequency bands in speech sounds and tested the relative contributions to speech recognition in acoustic and electric hearing.

They found that AM works well in quiet environments but less well where background noise is present. In turn, FM enhances speech, tone and speaker recognition when other noise was present, and overall provided a better quality of tonal sound than AM does. Current cochlear implants extract only AM information, limiting significantly their performance under realistic listening situations.

These FM modifications, Zeng adds, can particularly assist Asians and Africans who speak tonal languages, such as Mandarin, in which tonal variations are vitally important. “As with your radio, music sounds better on the FM dial, and enhancing the FM reception on hearing devices can go a long way to helping people listen to and enjoy the beautiful music of their everyday lives in ways they’ve been unable to do,” Zeng said.

Kaibo Nie, Ginger S. Stickney, Ying-Yee Kong, Michael Vongphoe and Ashish Bhargave of UCI and Chaogang Wei and Keli Cao of the Peking Union Medical College Hospital assisted with the study. The National Institutes of Health and the Chinese National Natural Science Foundation provided support.

About the University of California, Irvine: The University of California, Irvine is a top-ranked public university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 24,000 undergraduate and graduate students and about 1,400 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3 billion.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

More articles from Communications Media:

nachricht Between filter bubbles, uneven visibility and transnationality
06.12.2017 | Schweizerischer Nationalfonds SNF

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fachtagung analytica conference 2018

15.01.2018 | Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

 
Latest News

Black hole spin cranks-up radio volume

15.01.2018 | Physics and Astronomy

A matter of mobility: multidisciplinary paper suggests new strategy for drug discovery

15.01.2018 | Life Sciences

New method to map miniature brain circuits

15.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>