Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hearing aid signal not clear? Then switch frequency to FM

26.01.2005


What gives radio better sound can help block out background noise, increase tonal recognition in many hearing devices



There’s a reason why we listen to music on the FM dial of our radios – it just sounds better than it does on AM.

And this reason also holds true for cochlear implants and hearing aids. UC Irvine School of Medicine researchers have found that improving frequency modulation, or FM, reception on cochlear implants and hearing aids may increase the quality of life for the millions of Americans who use these devices.


Dr. Fan-Gang Zeng and his colleagues at UCI and the Peking Union Medical College Hospital in Beijing discovered that enhancing the detection of frequency modulation may significantly boost the performance of many hearing aids and automatic speech recognition devices by separating and blocking out background noise and increasing tonal recognition, which is essential to hearing music and certain spoken languages. Study results appear this week in the early online edition of Proceedings of the National Academy of Sciences.

Some 30 million Americans have some form of hearing loss, and some 4 million of these people benefit from using hearing aids or cochlear implants. But limitation on sound quality and overamplification of background sound can hinder their uses.

“Many hearing-aid – particularly cochlear-implant – users have trouble enjoying music or listening to conversation in a crowded room,” said Zeng, research director of the Hearing and Speech Lab at UCI. “But we’ve found that FM modifications to both existing and future devices may overcome these difficulties.”

Known as a leading expert in cochlear-implant research, Zeng and his colleagues looked into the reasons behind these limitations, specifically focusing on the two parameters of sound: amplitude (the height of a sound wave) and the frequency (the number of sound waves per unit of time).

Thirty-four normal-hearing and 18 cochlear-implant subjects participated in the study. They were tested on three speech-perception tasks known to be notoriously difficult for cochlear-implant users: speech recognition with a competing voice, speaker recognition and Mandarin-tone recognition. The researchers tested the amplitude modulation (AM) and FM from a number of frequency bands in speech sounds and tested the relative contributions to speech recognition in acoustic and electric hearing.

They found that AM works well in quiet environments but less well where background noise is present. In turn, FM enhances speech, tone and speaker recognition when other noise was present, and overall provided a better quality of tonal sound than AM does. Current cochlear implants extract only AM information, limiting significantly their performance under realistic listening situations.

These FM modifications, Zeng adds, can particularly assist Asians and Africans who speak tonal languages, such as Mandarin, in which tonal variations are vitally important. “As with your radio, music sounds better on the FM dial, and enhancing the FM reception on hearing devices can go a long way to helping people listen to and enjoy the beautiful music of their everyday lives in ways they’ve been unable to do,” Zeng said.

Kaibo Nie, Ginger S. Stickney, Ying-Yee Kong, Michael Vongphoe and Ashish Bhargave of UCI and Chaogang Wei and Keli Cao of the Peking Union Medical College Hospital assisted with the study. The National Institutes of Health and the Chinese National Natural Science Foundation provided support.

About the University of California, Irvine: The University of California, Irvine is a top-ranked public university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 24,000 undergraduate and graduate students and about 1,400 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3 billion.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

More articles from Communications Media:

nachricht Tile Based DASH Streaming for Virtual Reality with HEVC from Fraunhofer HHI
03.01.2017 | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

nachricht Product placement: Only brands placed very prominently benefit from 3D technology
07.07.2016 | Alpen-Adria-Universität Klagenfurt

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>