Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hearing aid signal not clear? Then switch frequency to FM

26.01.2005


What gives radio better sound can help block out background noise, increase tonal recognition in many hearing devices



There’s a reason why we listen to music on the FM dial of our radios – it just sounds better than it does on AM.

And this reason also holds true for cochlear implants and hearing aids. UC Irvine School of Medicine researchers have found that improving frequency modulation, or FM, reception on cochlear implants and hearing aids may increase the quality of life for the millions of Americans who use these devices.


Dr. Fan-Gang Zeng and his colleagues at UCI and the Peking Union Medical College Hospital in Beijing discovered that enhancing the detection of frequency modulation may significantly boost the performance of many hearing aids and automatic speech recognition devices by separating and blocking out background noise and increasing tonal recognition, which is essential to hearing music and certain spoken languages. Study results appear this week in the early online edition of Proceedings of the National Academy of Sciences.

Some 30 million Americans have some form of hearing loss, and some 4 million of these people benefit from using hearing aids or cochlear implants. But limitation on sound quality and overamplification of background sound can hinder their uses.

“Many hearing-aid – particularly cochlear-implant – users have trouble enjoying music or listening to conversation in a crowded room,” said Zeng, research director of the Hearing and Speech Lab at UCI. “But we’ve found that FM modifications to both existing and future devices may overcome these difficulties.”

Known as a leading expert in cochlear-implant research, Zeng and his colleagues looked into the reasons behind these limitations, specifically focusing on the two parameters of sound: amplitude (the height of a sound wave) and the frequency (the number of sound waves per unit of time).

Thirty-four normal-hearing and 18 cochlear-implant subjects participated in the study. They were tested on three speech-perception tasks known to be notoriously difficult for cochlear-implant users: speech recognition with a competing voice, speaker recognition and Mandarin-tone recognition. The researchers tested the amplitude modulation (AM) and FM from a number of frequency bands in speech sounds and tested the relative contributions to speech recognition in acoustic and electric hearing.

They found that AM works well in quiet environments but less well where background noise is present. In turn, FM enhances speech, tone and speaker recognition when other noise was present, and overall provided a better quality of tonal sound than AM does. Current cochlear implants extract only AM information, limiting significantly their performance under realistic listening situations.

These FM modifications, Zeng adds, can particularly assist Asians and Africans who speak tonal languages, such as Mandarin, in which tonal variations are vitally important. “As with your radio, music sounds better on the FM dial, and enhancing the FM reception on hearing devices can go a long way to helping people listen to and enjoy the beautiful music of their everyday lives in ways they’ve been unable to do,” Zeng said.

Kaibo Nie, Ginger S. Stickney, Ying-Yee Kong, Michael Vongphoe and Ashish Bhargave of UCI and Chaogang Wei and Keli Cao of the Peking Union Medical College Hospital assisted with the study. The National Institutes of Health and the Chinese National Natural Science Foundation provided support.

About the University of California, Irvine: The University of California, Irvine is a top-ranked public university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 24,000 undergraduate and graduate students and about 1,400 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3 billion.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

More articles from Communications Media:

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>