Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


“Controlling light with light”: Martini and post-doctoral researcher Murawski


Near-infrared laser transfers data to mid-infrared laser’s beam

“Interband transitions controlling intersubband transitions” is the technical description for what has been achieved in an optics lab in Stevens Institute of Technology’s Physics Department. Robert K. Murawski, a post-doctoral research assistant working under the direction of Professor Rainer Martini , has a simpler way to describe it: “Controlling light with light.”

Regardless of styling, the concept is not a new one, but its first demonstration in a laboratory opens new horizons in telecommunications, with implications for the secure, all-optical transmission of voice and data. Martini credits Murawski for having made the initial measurements proving that the principle is physically possible in a controlled environment.

“Basically,” explains Murawski, “we use a conventional kind of laser beam to ‘switch’ another, more advanced kind of laser beam – and it all happens in mid air.

“One laser beam is mid-infrared,” he says. “We illuminate it directly with a fiber-optic laser diode, which is near-infrared – and if that light has a message on it, then the mid-infrared will have a message on it once it passes through. You can use the fact, then, that the mid-infrared can transmit to the atmosphere to do things like free-space communications without fiber optics.”

“All current wavelength for optical communication is near-infrared, which is highly unreliable in a free-space environment,” explains Martini, a veteran of Lucent Technologies and the director of the Ultrafast Laser Spectroscopy & Communication Laboratory at Stevens. “The mid-infrared, which is generated by what is called a ‘quantum cascade laser’ or QCL, overcomes many of those limitations in traveling through free space. Plus, because it is ultra-focused, the QCL beam is a much more secure means by which to communicate than by broadcasting or other kinds of telephony.”

Another beauty of the near-infrared/QCL assembly, says Martini, is that “your switches act on two different wavelengths, and they are clearly separate and distinct. The two wavelengths can be handled and processed in independence. There’s no overlap, because we have the whole system clearly detangled.”

Martini and Murawski are quite confident that their achievement is unique.

“In the quantum cascade physics knowledge-base,” says Murawski, “there’s little if any work that’s been done like this. Interband transitions are really not talked about.”

Murawski believes that in the field of advanced quantum cascade lasers, in the physics area, Martini’s lab has developed a more complete picture of those particular dynamics “than anyone else currently working around the world.”

“Robert’s thesis,” says Martini, “is really the first complete theoretical discussion about the immense potential of modulating QCL at high speeds. His thesis sets the limits for how fast that laser can be.”

Murawski, who defended his dissertation in early May, says that the Martini lab has also figured out “how to preserve the integrity of the hardware package. You don’t want the QCL damaged or melting down while it’s in action.”

Martini is also proud that his lab houses a unique quantum cascade laser.

“It managed the fastest-recorded QCL modulation in the world. Everybody talked about it,” he says, “but we achieved it.”

Martini says that the controlling of light with light opens up a world of futuristic applications which – because they are imaginable – may at some point be possible.

“The question is,” he says, “What is happening in the laser beam when the interband transition takes place? The QCL is unique. One of the big issues is, you send current through it, and that current drops down making the laser transition. So when the first electron drops down, it tells the other electrons to go with it. So there’s a kind of ‘intelligence among the electrons.’ If we can reach in and manipulate that action, who knows what we can engineer using the properties of the laser beam?”

Established in 1870, Stevens offers baccalaureate, masters and doctoral degrees in engineering, science, computer science, management and technology management, as well as a baccalaureate in the humanities and liberal arts, and in business and technology. The university has enrollments of approximately 1,740 undergraduates and 2,600 graduate students. Additional information may be obtained from its web page at

Patrick Berzinski | Stevens Institute of Technology
Further information:

More articles from Communications Media:

nachricht High Number of Science Enthusiasts in Switzerland
05.02.2018 | Universität Zürich

nachricht Between filter bubbles, uneven visibility and transnationality
06.12.2017 | Schweizerischer Nationalfonds SNF

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>