Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Controlling light with light”: Martini and post-doctoral researcher Murawski

02.06.2004


Near-infrared laser transfers data to mid-infrared laser’s beam



“Interband transitions controlling intersubband transitions” is the technical description for what has been achieved in an optics lab in Stevens Institute of Technology’s Physics Department. Robert K. Murawski, a post-doctoral research assistant working under the direction of Professor Rainer Martini , has a simpler way to describe it: “Controlling light with light.”

Regardless of styling, the concept is not a new one, but its first demonstration in a laboratory opens new horizons in telecommunications, with implications for the secure, all-optical transmission of voice and data. Martini credits Murawski for having made the initial measurements proving that the principle is physically possible in a controlled environment.


“Basically,” explains Murawski, “we use a conventional kind of laser beam to ‘switch’ another, more advanced kind of laser beam – and it all happens in mid air.

“One laser beam is mid-infrared,” he says. “We illuminate it directly with a fiber-optic laser diode, which is near-infrared – and if that light has a message on it, then the mid-infrared will have a message on it once it passes through. You can use the fact, then, that the mid-infrared can transmit to the atmosphere to do things like free-space communications without fiber optics.”

“All current wavelength for optical communication is near-infrared, which is highly unreliable in a free-space environment,” explains Martini, a veteran of Lucent Technologies and the director of the Ultrafast Laser Spectroscopy & Communication Laboratory at Stevens. “The mid-infrared, which is generated by what is called a ‘quantum cascade laser’ or QCL, overcomes many of those limitations in traveling through free space. Plus, because it is ultra-focused, the QCL beam is a much more secure means by which to communicate than by broadcasting or other kinds of telephony.”

Another beauty of the near-infrared/QCL assembly, says Martini, is that “your switches act on two different wavelengths, and they are clearly separate and distinct. The two wavelengths can be handled and processed in independence. There’s no overlap, because we have the whole system clearly detangled.”

Martini and Murawski are quite confident that their achievement is unique.

“In the quantum cascade physics knowledge-base,” says Murawski, “there’s little if any work that’s been done like this. Interband transitions are really not talked about.”

Murawski believes that in the field of advanced quantum cascade lasers, in the physics area, Martini’s lab has developed a more complete picture of those particular dynamics “than anyone else currently working around the world.”

“Robert’s thesis,” says Martini, “is really the first complete theoretical discussion about the immense potential of modulating QCL at high speeds. His thesis sets the limits for how fast that laser can be.”

Murawski, who defended his dissertation in early May, says that the Martini lab has also figured out “how to preserve the integrity of the hardware package. You don’t want the QCL damaged or melting down while it’s in action.”

Martini is also proud that his lab houses a unique quantum cascade laser.

“It managed the fastest-recorded QCL modulation in the world. Everybody talked about it,” he says, “but we achieved it.”

Martini says that the controlling of light with light opens up a world of futuristic applications which – because they are imaginable – may at some point be possible.

“The question is,” he says, “What is happening in the laser beam when the interband transition takes place? The QCL is unique. One of the big issues is, you send current through it, and that current drops down making the laser transition. So when the first electron drops down, it tells the other electrons to go with it. So there’s a kind of ‘intelligence among the electrons.’ If we can reach in and manipulate that action, who knows what we can engineer using the properties of the laser beam?”

Established in 1870, Stevens offers baccalaureate, masters and doctoral degrees in engineering, science, computer science, management and technology management, as well as a baccalaureate in the humanities and liberal arts, and in business and technology. The university has enrollments of approximately 1,740 undergraduates and 2,600 graduate students. Additional information may be obtained from its web page at www.Stevens.edu.

Patrick Berzinski | Stevens Institute of Technology
Further information:
http://www.stevensnewsservice.com/pr/pr439.htm

More articles from Communications Media:

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>