Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fractal-shaped tiles developed for new broadband antenna class

20.10.2003


Penn State engineers have developed innovative design methods for a new class of antennas composed of an array of fractal-shaped tiles that offer anywhere from a 4:1 to 8:1 improvement in bandwidth compared to their conventional counterparts.


Douglas H. Werner, professor of electrical engineering and senior scientist, Applied Research Laboratory, Penn State in front of tiles at the Alhambra, Granada, Spain.



Many natural objects, such as tree branches and their root systems, peaks and valleys in a landscape and rivers and their tributaries are versions of mathematical fractals which appear pleasingly irregular to the eye but are actually made of self-similar, repeated units.

The new broadband antennas are composed of irregular but self-similar, repeated fractal-shaped unit tiles or "fractiles" which cover an entire plane without any gaps or overlaps. The outer boundary contour of an array built of fractiles follows a fractal distribution.


Dr. Douglas H. Werner, professor of electrical engineering and senior scientist in Penn State’s Applied Research Laboratory, will describe the new antennas and their generation at the 2003 IEEE AP-S Topical Conference on Wireless Communication Technology, Oct. 16, in Honolulu, Hawaii. His paper is "A New Design Methodology for Modular Broadband Arrays Based on Fractal Tilings." His co-authors are Waroth Kuhirun, graduate student, and Dr. Pingjuan Werner, associate professor of electrical engineering.

While fractal concepts have been used previously in antenna design, Werner and his research team are the first to introduce a design approach for broadband phased array antenna systems that combines aspects of tiling theory with fractal geometry.

Once the specific fractile array has been designed, the Penn State team exploits the fact that fractal arrays are generated recursively or via successive stages of growth starting from a simple initial unit, to develop fast recursive algorithms for calculating radiation patterns. Using the recursive property, they have also developed rapid algorithms for adaptive beam forming, especially for arrays with multiple stages of growth that contain a relatively large number of elements.

Werner says, "The availability of fast beam forming algorithms is especially advantageous for designing smart antenna systems." The Penn State team has also shown that a fractile array made of unit tiles based on the Peano-Gosper curve, for example, offers performance advantages over a similar-sized array with conventional square boundaries. The Peano-Gosper fractile array produces no grating lobes over a much wider frequency band than conventional periodic planar square arrays.

Werner explains that "Grating lobes are sidelobes with the same intensity as the mainbeam. They are undesirable because they take energy away from the main beam and focus it in unintended directions, causing a reduction in the gain of an antenna array." The University is patenting the team’s approach to Peano-Gosper and related fractile arrays. The team has also been awarded a grant through the Applied Research Laboratory to build and test a prototype.

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Communications Media:

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Tile Based DASH Streaming for Virtual Reality with HEVC from Fraunhofer HHI
03.01.2017 | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Electrical 'switch' in brain's capillary network monitors activity and controls blood flow

27.03.2017 | Health and Medicine

Clock stars: Astrocytes keep time for brain, behavior

27.03.2017 | Life Sciences

Sun's impact on climate change quantified for first time

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>