Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New virtual reality array allows immersive experience without the disorienting 3-D goggles

13.05.2003


The University of Pennsylvania has installed a virtual reality system that allows a participant full-body interaction with a virtual environment without the hassle of bulky, dizzying 3-D glasses. The system will be demonstrated for journalists and others Thursday, May 15.



Key to the installation, dubbed LiveActor, is the pairing of an optical motion capture system to monitor the body’s movements with a stereo projection system to immerse users in a virtual environment. The combination lets users interact with characters embedded within virtual worlds.

"Traditional virtual reality experiences offer limited simulations and interactions through tracking of a few sensors mounted on the body," said Norman I. Badler, professor of computer and information science and director of Penn’s Center for Human Modeling and Simulation. "LiveActor permits whole-body tracking and doesn’t require clunky 3-D goggles, resulting in a more realistic experience."


LiveActor users wear a special suit that positions 30 sensors on different parts of the body. As the system tracks the movement of these sensors as an actor moves around a stage roughly 10 feet by 20 feet in size, a virtual character -- such as a dancing, computer-generated Ben Franklin, Penn’s founder -- can recreate the user’s movements with great precision and without a noticeable time lag. The system can also project images onto the array of screens surrounding the LiveActor stage, allowing users to interact with a bevy of virtual environments.

LiveActor’s creators envision an array of applications and plan to make the system available to companies and researchers. Undergraduates have already used LiveActor to create a startlingly realistic but completely imaginary 3-D chapel. The array could be used to generate footage of virtual characters in movies, sidestepping arduous frame-by-frame drawing. LiveActor could also help those with post-traumatic stress disorder face their fears in a comfortable, controlled environment.

"The system is much more than the sum of its parts," Badler said. "Motion capture has traditionally been used for animation, game development and human performance analysis, but with LiveActor users can delve deeper into virtual worlds. The system affords a richer set of interactions with both characters and objects in the virtual environment."

While stereo projection systems have in the past been limited to relatively static observation and navigation -- such as architectural walk-throughs, games and medical visualizations -- LiveActor can be used to simulate nearly any environment or circumstance, chart user reactions and train users to behave in new ways. Unlike actual humans, virtual characters can be scripted to behave consistently in a certain way.


LiveActor was made possible through a grant from the National Science Foundation with matching funding by Penn’s School of Engineering and Applied Science, as well as equipment grants from Ascension Technology Corporation and EON Reality.

Steve Bradt | EurekAlert!
Further information:
http://www.upenn.edu/

More articles from Communications Media:

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Tile Based DASH Streaming for Virtual Reality with HEVC from Fraunhofer HHI
03.01.2017 | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Big data approach to predict protein structure

27.03.2017 | Life Sciences

Parallel computation provides deeper insight into brain function

27.03.2017 | Life Sciences

Weather extremes: Humans likely influence giant airstreams

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>