Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New virtual reality array allows immersive experience without the disorienting 3-D goggles

13.05.2003


The University of Pennsylvania has installed a virtual reality system that allows a participant full-body interaction with a virtual environment without the hassle of bulky, dizzying 3-D glasses. The system will be demonstrated for journalists and others Thursday, May 15.



Key to the installation, dubbed LiveActor, is the pairing of an optical motion capture system to monitor the body’s movements with a stereo projection system to immerse users in a virtual environment. The combination lets users interact with characters embedded within virtual worlds.

"Traditional virtual reality experiences offer limited simulations and interactions through tracking of a few sensors mounted on the body," said Norman I. Badler, professor of computer and information science and director of Penn’s Center for Human Modeling and Simulation. "LiveActor permits whole-body tracking and doesn’t require clunky 3-D goggles, resulting in a more realistic experience."


LiveActor users wear a special suit that positions 30 sensors on different parts of the body. As the system tracks the movement of these sensors as an actor moves around a stage roughly 10 feet by 20 feet in size, a virtual character -- such as a dancing, computer-generated Ben Franklin, Penn’s founder -- can recreate the user’s movements with great precision and without a noticeable time lag. The system can also project images onto the array of screens surrounding the LiveActor stage, allowing users to interact with a bevy of virtual environments.

LiveActor’s creators envision an array of applications and plan to make the system available to companies and researchers. Undergraduates have already used LiveActor to create a startlingly realistic but completely imaginary 3-D chapel. The array could be used to generate footage of virtual characters in movies, sidestepping arduous frame-by-frame drawing. LiveActor could also help those with post-traumatic stress disorder face their fears in a comfortable, controlled environment.

"The system is much more than the sum of its parts," Badler said. "Motion capture has traditionally been used for animation, game development and human performance analysis, but with LiveActor users can delve deeper into virtual worlds. The system affords a richer set of interactions with both characters and objects in the virtual environment."

While stereo projection systems have in the past been limited to relatively static observation and navigation -- such as architectural walk-throughs, games and medical visualizations -- LiveActor can be used to simulate nearly any environment or circumstance, chart user reactions and train users to behave in new ways. Unlike actual humans, virtual characters can be scripted to behave consistently in a certain way.


LiveActor was made possible through a grant from the National Science Foundation with matching funding by Penn’s School of Engineering and Applied Science, as well as equipment grants from Ascension Technology Corporation and EON Reality.

Steve Bradt | EurekAlert!
Further information:
http://www.upenn.edu/

More articles from Communications Media:

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>