Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New virtual reality array allows immersive experience without the disorienting 3-D goggles

13.05.2003


The University of Pennsylvania has installed a virtual reality system that allows a participant full-body interaction with a virtual environment without the hassle of bulky, dizzying 3-D glasses. The system will be demonstrated for journalists and others Thursday, May 15.



Key to the installation, dubbed LiveActor, is the pairing of an optical motion capture system to monitor the body’s movements with a stereo projection system to immerse users in a virtual environment. The combination lets users interact with characters embedded within virtual worlds.

"Traditional virtual reality experiences offer limited simulations and interactions through tracking of a few sensors mounted on the body," said Norman I. Badler, professor of computer and information science and director of Penn’s Center for Human Modeling and Simulation. "LiveActor permits whole-body tracking and doesn’t require clunky 3-D goggles, resulting in a more realistic experience."


LiveActor users wear a special suit that positions 30 sensors on different parts of the body. As the system tracks the movement of these sensors as an actor moves around a stage roughly 10 feet by 20 feet in size, a virtual character -- such as a dancing, computer-generated Ben Franklin, Penn’s founder -- can recreate the user’s movements with great precision and without a noticeable time lag. The system can also project images onto the array of screens surrounding the LiveActor stage, allowing users to interact with a bevy of virtual environments.

LiveActor’s creators envision an array of applications and plan to make the system available to companies and researchers. Undergraduates have already used LiveActor to create a startlingly realistic but completely imaginary 3-D chapel. The array could be used to generate footage of virtual characters in movies, sidestepping arduous frame-by-frame drawing. LiveActor could also help those with post-traumatic stress disorder face their fears in a comfortable, controlled environment.

"The system is much more than the sum of its parts," Badler said. "Motion capture has traditionally been used for animation, game development and human performance analysis, but with LiveActor users can delve deeper into virtual worlds. The system affords a richer set of interactions with both characters and objects in the virtual environment."

While stereo projection systems have in the past been limited to relatively static observation and navigation -- such as architectural walk-throughs, games and medical visualizations -- LiveActor can be used to simulate nearly any environment or circumstance, chart user reactions and train users to behave in new ways. Unlike actual humans, virtual characters can be scripted to behave consistently in a certain way.


LiveActor was made possible through a grant from the National Science Foundation with matching funding by Penn’s School of Engineering and Applied Science, as well as equipment grants from Ascension Technology Corporation and EON Reality.

Steve Bradt | EurekAlert!
Further information:
http://www.upenn.edu/

More articles from Communications Media:

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>