Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sandia ’be there now’ hardware enhances long-distance collaborations

17.12.2002


Huge data sets examined interactively yet remotely



A surgeon in New York who wants the opinion quickly of a specialist in Los Angeles probably would send medical MRI [magnetic resonance imaging] files as e-mail attachments or make them accessible in Internet drop zones. Unfortunately for patients on operating tables, extremely large files may take a half-hour to transmit and require a very large computer ( perhaps not available ) to form images from the complicated data. Additionally, each rotation of the image for better viewing can take minutes to appear.

Now, interactive remote-visualization hardware that allows doctors to view and manipulate images based on very large data sets as though standing in the same room has been developed at Sandia National Laboratories.


The tool also will work for engineers, military generals, oil exploration teams, or anyone else with a need to interact with computer-generated images from remote locations.

"The niche for this product is when the data set you’re trying to visualize is so large you can’t move it, and yet you want to be collaborative, to share it without sending copies to separate locations," says Sandia team leader Lyndon Pierson.

Stretching video cables

The Sandia hardware, for which a patent has been applied, allows the data to be kept at the main location but sends images to locations ready to receive them. The interactivity then available is similar to two people operating a game board.

The lag time between action and visible result is under 0.1 second even though the remote computer is thousands of miles away and the data sets, huge.

"We expect our method will interest oil companies, universities, the military -- anywhere people have huge quantities of visualization data to transmit and be jointly studied," says Pierson. "Significant commercial interest [in the new device] has been demonstrated by multiple companies."

The Sandia hardware leverages without shame the advances in 3D commercial rendering technology "in order not to re-invent the wheel," says Sandia researcher Perry Robertson.

Graphics cards for video games have extraordinary 2-D and even 3-D rendering capabilities within the cards themselves. But images from these cards, typically fed to nearby monitors, do not solve the problem of how to plug them into a network, says Robertson.

Fortunately, the Sandia extension hardware looks electronically just like a monitor to the graphics card, says Robertson. "So, to move an image across the Internet, as a first step our device grabs the image."

Transmitting image and response

The patented Sandia hardware squeezes the video data flooding in at nearly 2.5 gigabits a second into a network pipe that carries less than 0.5 gigabits/sec.

"While compression is not hard, it’s hard to do fast. And it has to be interactive, which streaming video typically is not," says Pierson.

The Sandia compression minimizes data loss to ensure image fidelity. "Users need to be sure that the things they see on the screen are real, and not some artifact of image compression," he says.

The group knew that a hardware solution was necessary to keep up with the incoming video stream.

"Without it, the receiver’s frame rate would be unacceptably slow," says Robertson. "We wanted the user to experience sitting right at the supercomputer from thousands of miles away."

"In an attempt to reduce the need for additional hardware," says John Eldridge, a Sandia researcher who wrote the software applications, "we also created software versions of the encoder and decoder units for testing purposes. However, there is only so much you can do in software at these high resolutions and frame rates."

The custom-built apparatus has two boards ( one for compression, the other for expansion. The boards use standard low-cost SDRAM memory, like that found in most PCs, for video buffers. Four reprogrammable logic chips do the main body of work. A single-board PC running Linux is used for supervisory operations.

"We turned to Linux because of its networking support and ease of use," says Ron Olsberg, a Sandia project engineer.

"We built this apparatus for very complex ASCI visualizations. If we could have bought it off the shelf, we would have," says Robertson.

Funded by ASCI’s [Advanced Scientific Computing Initiative] Problem-Solving environment, a pair of boards cost about $25,000, but are expected to cost much less when commercially available.

A successful demonstration took place in late October between Chicago and the Amsterdam Technology Center in the Netherlands. A second demonstration occurred between Sandia locations in Albuquerque and Livermore and the show floor of the Supercomputing 2002 convention in Baltimore in November.

"Now that this technology is out there, we expect other applications will begin to take advantage of it," says Pierson. "Their experiences and improvements will eventually feed back into US military capability."


Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Story available at: http://www.sandia.gov/news-center/news-releases/2002/comp-soft-math/hotlaptop.html Sandia National Laboratories’ World Wide Web home page is located at www.sandia.gov.

Sandia news releases, news tips, science photo gallery, and periodicals can be found at the News and Events button.

Sandia National Laboratories
A Department of Energy National Laboratory
Managed and Operated by Sandia Corporation
ALBUQUERQUE, NM LIVERMORE, CA
MEDIA RELATIONS DEPARTMENT MS 0165
ALBUQUERQUE, NM 87185-0165
PHONE: (505) 844-8066 FAX: (505) 844-0645

Neal Singer | EurekAlert!
Further information:
http://www.sandia.gov/news-center/news-releases/2002/comp-soft-math/hotlaptop.html
http://www.sandia.gov

More articles from Communications Media:

nachricht High Number of Science Enthusiasts in Switzerland
05.02.2018 | Universität Zürich

nachricht Between filter bubbles, uneven visibility and transnationality
06.12.2017 | Schweizerischer Nationalfonds SNF

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>