Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New communication systems to bring order to air traffic chaos

31.05.2011
Averting chaos in Europe’s skies will require replacing systems that are up to 50 years old. Air traffic throughout Europe is now being reorganised to meet the challenges ahead.

“Current communication systems have been in use since the 1960s and 1970s,” states Jan Erik Håkegård of the Norwegian research institution SINTEF. ”They will not be able to deal with the pressing need for greater capacity.”

Dr Håkegård heads the project Spectrum Efficient Communication for Future Aeronautical Services (SECOMAS), established to develop new air traffic communication technology. The project receives funding under the Research Council’s Large-scale Programme on Core Competence and Growth in ICT (VERDIKT).

Intranet for air traffic

Whereas pilots currently communicate verbally with air traffic controllers, this information will be digitalised in the future. One purpose is to make the information available to multiple user groups, such as ground crews.

“In the future, information will be largely digital and stored in an Internet ‘cloud’, and communication will function like an intranet,” explains Dr Håkegård.

Will benefit passengers

“Travellers will probably not notice the changes much,” adds the project manager, “which is exactly what we intend.”

“Passengers may even see prices drop a bit, and find that their journeys take less time overall, but by and large these factors won’t have a major impact on their experience. By contrast, if we didn’t carry out this upgrade, they would really feel it – the increased flight activity would mean sky-high prices and a large number of delays.”

Better information flow

Coordinating a large network of many aircraft is extremely challenging; if one flight is delayed it affects all others. Furthermore, once delays arise, it is a major endeavour to reallocate the necessary flight paths.

The conversion to digital services in the aviation industry is a comprehensive undertaking with strict requirements governing the new communication technology.

“A set of digital services for pilots has already been developed,” explains Dr Håkegård. “The system will give them information about the status of their aircraft, the location of other aircraft, what kind of weather to expect, and where they can fly to increase air traffic efficiency.”

The result will be fewer delays, shorter flight times, and a better flow of information between airline and airport personnel.

Flights planned in detail

Currently, a plane is not allocated a landing slot until it is close to the airport, which often means that pilots must spend some time circling while they wait their turn in busy traffic. The technology under development will reduce this kind of waste.

“By the time the plane leaves its gate before take-off,” says Dr Håkegård, “the flight crew will have a detailed schedule showing where they should be at any given time. This allows them to plan the flight with much greater precision.”

Efficient and greener

Reorganising all aviation traffic across national borders to raise efficiency as well as capacity is one of the EU’s most ambitious priority areas. The initiative is absolutely necessary in order to deal with future increases in air traffic, not to mention challenges related to safety and the environment.

“Europe’s airspace is very fragmented today,” says Dr Håkegård. “Once we implement integrated management, we will have greater control over flight activities and be able to fly more direct routes more often than what is currently possible.”

Punctuality will also be substantially improved once more tasks are entrusted to the new technology, according to the project manager, who stresses that the systems being developed will in no way compromise current safety standards.

Efficient air traffic and lower fuel consumption will also benefit the environment. One long-term objective behind the reorganisation is to reduce average flying time by 8-14 minutes per flight while minimising fuel consumption and thereby CO2 emissions.

Adaptations needed

The European initiative’s technological and operational dimension is entitled Single European Sky ATM Research (SESAR). The SECOMAS project’s contribution to the overall initiative is development of the technology to digitalise communications between flight crew and airport personnel.

Mass production and gradual installation of the new technology will begin in 2014. But special challenges posed by the geography in countries such as Norway require some special adaptations.

“Norway extends over great distances with little infrastructure and many mountains compared to Central and Southern Europe,” says Dr Håkegård. “This requires that the systems be adapted for Norwegian conditions.”

http://www.forskningsradet.no/en/Newsarticle/Bringing_order_to_air_
traffic_chaos/1253966718427?WT.mc_id=alphagalileo

Else Lie | alfa
Further information:
http://www.rcn.no

More articles from Communications Media:

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Tile Based DASH Streaming for Virtual Reality with HEVC from Fraunhofer HHI
03.01.2017 | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

OLED production facility from a single source

29.03.2017 | Trade Fair News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>