Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Communicating uncertain climate risks

30.03.2011
In wake of recent shifts in public opinion, researchers analyze climate change communication

Despite much research that demonstrates potential dangers from climate change, public concern has not been increasing.

One theory is that this is because the public is not intimately familiar with the nature of the climate uncertainties being discussed.

"A major challenge facing climate scientists is explaining to non-specialists the risks and uncertainties surrounding potential" climate change, says a new Perspectives piece published today in the science journal Nature Climate Change.

The article attempts to identify communications strategies needed to improve layman understanding of climate science.

"Few citizens or political leaders understand the underlying science well enough to evaluate climate-related proposals and controversies," the authors write, at first appearing to support the idea of specialized knowledge--that only climate scientists can understand climate research.

But, author Baruch Fischhoff quickly dispels the notion. "The goal of science communication should be to help people understand the state of the science," he says, "relevant to the decisions that they face in their private and public lives."

Fischhoff, a social and decision scientist at Carnegie Mellon University in Pittsburgh and Nick Pidgeon, an environmental psychologist at Cardiff University in the United Kingdom wrote the article together, titled, "The role of social and decision sciences in communicating uncertain climate risks."

Fischhoff and Pidgeon argue that science communication should give the public tools that will allow them to understand the uncertainties and disagreements that often underlie scientific discussion. He says that understanding is more likely to happen when people know something about the process that produces the conflicts they hear about in the press.

"Communications about climate science, or any other science, should embrace the same scientific standards as the science that they are communicating," says Fischhoff. He says this is crucial to maintaining people's trust in scientific expertise.

"When people lack expertise, they turn to trusted sources to interpret the evidence for them," Fischhoff says. "When those trusted sources are wrong, then people are misled."

Fischhoff and Pidgeon propose a communications strategy that applies "the best available communications science to convey the best available climate science." The strategy focuses on identifying, disclosing and when necessary reframing climate risks and uncertainties so the lay public can understand them easily.

"All of our climate-related options have uncertainties, regarding health, economics, ecosystems, and international stability, among other things," says Fischhoff. "It's important to know what gambles we're taking if, for example, we ignore climate issues altogether or create strong incentives for making our lives less energy intensive."

Key to effective communications is what the authors call "strategic organization" and "strategic listening."

Strategic organization involves working in cross-disciplinary teams that include, at a minimum, climate scientists, decision scientists, social and communications specialists and other experts.

Strategic listening encourages climate scientists, who often have little direct contact with the public, to overcome flawed intuitions of how well they communicate. Strategic listening asks scientists to go beyond intuitive feeling and consider how well they communicate by using systematic feedback and empirical evaluation.

"I think that it is good for scientists to be in contact with the public, so that they can learn about its concerns and see how well, or poorly, they are communicating their knowledge," says Fischhoff. "That way they can do a better job of producing and conveying the science that people need."

Fischhoff's research on science communication is funded by the National Science Foundation's Decision Risk and Management Sciences program.

Bobbie Mixon | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Communications Media:

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Tile Based DASH Streaming for Virtual Reality with HEVC from Fraunhofer HHI
03.01.2017 | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>