Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Communicating uncertain climate risks

30.03.2011
In wake of recent shifts in public opinion, researchers analyze climate change communication

Despite much research that demonstrates potential dangers from climate change, public concern has not been increasing.

One theory is that this is because the public is not intimately familiar with the nature of the climate uncertainties being discussed.

"A major challenge facing climate scientists is explaining to non-specialists the risks and uncertainties surrounding potential" climate change, says a new Perspectives piece published today in the science journal Nature Climate Change.

The article attempts to identify communications strategies needed to improve layman understanding of climate science.

"Few citizens or political leaders understand the underlying science well enough to evaluate climate-related proposals and controversies," the authors write, at first appearing to support the idea of specialized knowledge--that only climate scientists can understand climate research.

But, author Baruch Fischhoff quickly dispels the notion. "The goal of science communication should be to help people understand the state of the science," he says, "relevant to the decisions that they face in their private and public lives."

Fischhoff, a social and decision scientist at Carnegie Mellon University in Pittsburgh and Nick Pidgeon, an environmental psychologist at Cardiff University in the United Kingdom wrote the article together, titled, "The role of social and decision sciences in communicating uncertain climate risks."

Fischhoff and Pidgeon argue that science communication should give the public tools that will allow them to understand the uncertainties and disagreements that often underlie scientific discussion. He says that understanding is more likely to happen when people know something about the process that produces the conflicts they hear about in the press.

"Communications about climate science, or any other science, should embrace the same scientific standards as the science that they are communicating," says Fischhoff. He says this is crucial to maintaining people's trust in scientific expertise.

"When people lack expertise, they turn to trusted sources to interpret the evidence for them," Fischhoff says. "When those trusted sources are wrong, then people are misled."

Fischhoff and Pidgeon propose a communications strategy that applies "the best available communications science to convey the best available climate science." The strategy focuses on identifying, disclosing and when necessary reframing climate risks and uncertainties so the lay public can understand them easily.

"All of our climate-related options have uncertainties, regarding health, economics, ecosystems, and international stability, among other things," says Fischhoff. "It's important to know what gambles we're taking if, for example, we ignore climate issues altogether or create strong incentives for making our lives less energy intensive."

Key to effective communications is what the authors call "strategic organization" and "strategic listening."

Strategic organization involves working in cross-disciplinary teams that include, at a minimum, climate scientists, decision scientists, social and communications specialists and other experts.

Strategic listening encourages climate scientists, who often have little direct contact with the public, to overcome flawed intuitions of how well they communicate. Strategic listening asks scientists to go beyond intuitive feeling and consider how well they communicate by using systematic feedback and empirical evaluation.

"I think that it is good for scientists to be in contact with the public, so that they can learn about its concerns and see how well, or poorly, they are communicating their knowledge," says Fischhoff. "That way they can do a better job of producing and conveying the science that people need."

Fischhoff's research on science communication is funded by the National Science Foundation's Decision Risk and Management Sciences program.

Bobbie Mixon | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Communications Media:

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Tile Based DASH Streaming for Virtual Reality with HEVC from Fraunhofer HHI
03.01.2017 | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>