Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making "Frozen Smoke" the Fast Way

04.02.2014
Aerogels could improve some of our favorite machines, such as cars

One day, Union College’s Aerogel Team’s novel way of making “frozen smoke” could improve some of our favorite machines, including cars.


Aerogel samples

“When you hold aerogel it feels like nothing – like frozen smoke. It’s about 95 to 97 percent air,” said Ann Anderson, professor of mechanical engineering. “Nano-porous, solid and very low density, aerogel is made by removing solvents from a wet-gel. It’s used for many purposes, like thermal insulation (on the Mars Rover), in windows or in extreme-weather clothing and sensors.”

Together with Brad Bruno, associate professor of mechanical engineering, Mary Carroll, professor of chemistry and others, Anderson is studying the feasibility of commercializing their aerogel fabrication process. A time and money-saver, it could appeal to industries already using aerogel made in other ways.

During rapid supercritical extraction (RSCE), chemicals gel together (like Jell-O) in a hot press; the resulting wet-gel is dried by removing solvents (the wet part). The remaining aerogel (dried gel), is created in hours, rather than the days or weeks alternative methods take.

RSCE, Anderson said, is also approximately seven times cheaper, requiring one hour of labor for every 8 hours the other methods need.

A good place for such a process, and Union aerogel, is the automotive industry.

“Our 3-way catalytic aerogels promote chemical reactions that convert the three major pollutants in automotive exhaust – unburned hydrocarbons, nitrogen oxides and carbon monoxide – into less harmful water, nitrogen and carbon dioxide,” Anderson said. “Because aerogels have very high surface areas and good thermal properties, we think they could replace precious metals, like platinum, used in current catalytic converters.”

Indeed, the surface area of one 0.5-gram bit of aerogel equals 250 square meters.

“That’s a lot of surface area for gases to come in contact with, facilitating very efficient pollution mitigation,” Anderson said.

The team’s work has received support from the National Science Foundation, the ACS Petroleum Research Fund and the Union College Faculty Research Fund.

Phillip Wajda | Newswise
Further information:
http://www.union.edu

Further reports about: Aerogel Smoke chemical reaction frozen smoke nitrogen oxide surface area

More articles from Automotive Engineering:

nachricht EU-LIVE launches: European researchers and manufacturers developing smart urban light vehicles
22.06.2015 | Kompetenzzentrum - Das virtuelle Fahrzeug Forschungsgesellschaft mbH

nachricht Cost-efficiency of plug-in hybrids calculated a thousand times faster
22.04.2015 | Chalmers University of Technology

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Cold Hotspots: METEOR expedition takes a close look at upwelling zones in the Baltic Sea

28.07.2015 | Earth Sciences

A new EU funded training for young scientists in cancer research

28.07.2015 | Awards Funding

Reshaping the solar spectrum to turn light to electricity

28.07.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>