Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crossing the Gap: Civil Engineers Develop Improved Method for Detecting, Measuring Bridge Damage

23.07.2012
A ratings system developed by a group of Kansas State University researchers could keep bridges safer and help prevent catastrophic collapses.

Hayder Rasheed, associate professor of civil engineering, and Yacoub Najjar, professor of civil engineering, are collaborating to better detect and measure damage in concrete bridges. Ahmed Al-Rahmani, doctoral student in civil engineering, United Arab Emirates, has also been involved in the project.

The researchers have created a bridge health index, which is a rating system that more accurately describes the amount of damage in a bridge. Additionally, the health index can extend beyond bridges and apply to other structures, such as gas pipelines, dams, buildings and airplanes.

The engineers have developed ways to take bridge measurements and use finite element analysis and neural network modeling to back-calculate and detect bridge damage. The researchers combined this process of inverse problem solving with Najjar's expertise in neural networks to create the bridge health index.

Current methods of inspecting bridges are very subjective, Rasheed said. Experienced inspectors from the Federal Highway Administration in the U.S. Department of Transportation visually inspect bridges and determine damage amounts. Problems can arise because one inspector may determine a bridge to be 70 percent damaged, while another inspector maybe determine the same bridge to be 80 percent damaged.

"It varies from inspector to inspector," Rasheed said. "They measure the cracks in the bridge, but they have no objective way to calculate how much it is damaged. Because the inspectors decide which bridges are repaired first, it's very important to make the process objective across the board."

The bridge health index provides a more objective way to determine and compare bridge damage to decide which bridges most need repairs. The network allows inspectors to input parameters, such width, depth and location of cracks in a bridge, and the network will tell the health index of the bridge.

According to the bridge health index, a new, undamaged bridge has a health index of 100. The health index of a bridge goes down as it gets older or as damage occurs.

"The health index is one systematic approach in a sense," Najjar said. "Inspectors gather information about the bridge, put in the information and they receive the health index of the bridge. It makes it easier to study the bridge because you bring all of these dimensions into one number. But when you have multiple dimensions, it is difficult to rate them."

Currently, the researchers and several graduate students have been building and training the health index system with synthetic bridges, which can simulate how bridges will act under certain conditions. The researchers have built the network based on thousands of simulations.

"We take these measurements and we run them through two cycles of analysis," Rasheed said. "We come up with damage detection of where we expect the cracks to be and how deep and how wide they are. It's a very intelligent system."

The next step is to build bridge beams. The engineers will create cracks in the beams and then enter measurements into their network modeling system to determine how well the system can detect and predict cracks. After working with bridge beams, the researchers will test bridges throughout the state.

The researchers said the health index system could lead to safer bridges and prevent catastrophic events, like the 2007 collapse of the I-35W Mississippi River bridge in Minneapolis, from reoccurring.

"If a system like this had existed, inspectors might have foreseen there would be a problem with the Minneapolis bridge," Najjar said. "It might have been weak in certain areas, but other elements might have been very healthy. If you don’t have a health index to reflect that, you won't be able to rate it."

The engineers have also discovered numerous applications of the health index because the same network modeling system can be applied to other structures -- including dams, buildings and airplanes.

"Using this system on airplanes is especially effective because you deal with specific material and you can understand its behavior even better," Najjar said. "You can test the wing of an airplane and find its health index."

The researchers have received financial support from the Kansas Department of Transportation and want to develop the network model into a tool that can be used by the Department of Transportation.

Hayder Rasheed, 785-532-1589, hayder@k-state.edu;
and Yacoub Najjar, 785-532-5863, ea4146@k-state.edu

Hayder Rasheed | Newswise Science News
Further information:
http://www.k-state.edu

More articles from Architecture and Construction:

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>