Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USDA Scientists Study Effects of Rising Carbon Dioxide on Rangelands

04.08.2011
Rising carbon dioxide (CO2) levels can reverse the drying effects of predicted higher temperatures on semi-arid rangelands, according to a study published today in the scientific journal Nature by a team of U.S. Department of Agriculture (USDA) and university scientists.

Warmer temperatures increase water loss to the atmosphere, leading to drier soils. In contrast, higher CO2 levels cause leaf stomatal pores to partly close, lessening the amount of water vapor that escapes and the amount of water plants draw from soil.

This new study finds that CO2 does more to counterbalance warming-induced water loss than previously expected. In fact, simulations of levels of warming and CO2 predicted for later this century demonstrated no net change in soil water, and actually increased levels of plant growth for warm-season grasses.

"By combining higher temperatures with elevated CO2 levels in an experiment on actual rangeland, these researchers are developing the scientific knowledge base to help prepare managers of the world's rangelands for what is likely to happen as climate changes in the future," said Edward B. Knipling, administrator of the Agricultural Research Service (ARS), USDA's principal intramural scientific research agency.

The results cover the first four years of the eight-year Prairie Heating and CO2 Enrichment (PHACE) experiment on native northern mixed grass rangeland. The study is being conducted by the ARS Rangeland Resources Research Unit (RRRU) at the High Plains Grasslands Research Station near Cheyenne, Wyo.

ARS plant physiologist Jack Morgan leads the study, which uses both CO2 pipelines and thermal infrared heaters to simulate global warming conditions predicted for the end of the century: 600 parts per million (ppm) of CO2—compared to today's average 390 ppm—and day/night temperatures raised by 3 and 5 degrees Fahrenheit, respectively.

Based on these findings, warmer temperatures would likely play a role in changing the relative success of various grass types. "Only the warm-season grasses had their growth boosted higher by CO2 and warmer temperatures," Morgan said. "If this leads to a competitive advantage for warm-season grasses, it may increase the challenges faced by ranchers who desire cool-season grasses for early-season forage."

Elise Pendall and David Williams at the University of Wyoming at Laramie and Matthew Wallenstein at Colorado State University at Fort Collins also are participating in the study, which will be completed in 2013. Retired ARS soil scientist Bruce Kimball, designer of the infrared heater system, is helping conduct the study. Kimball serves as a research collaborator at the ARS U.S. Arid-Land Agricultural Research Center in Maricopa, Ariz.

Grass-dominated, dry rangelands account for approximately a third of the Earth's land surface, providing most of the forage eaten by livestock. This research, the first of its kind on this scale for rangelands, supports the USDA priority of helping farmers and ranchers throughout the United States and the rest of the world best adapt production practices to variable climate patterns.

Morgan said more research is needed to determine how the water-savings effect applies over the long run and in other types of semi-arid rangelands as well as to croplands in semi-arid areas. "It is important to understand that CO2 only offset the direct effects of warming on soil water in this experiment, and that it is unlikely to offset more severe drought due to combined warming and reduced precipitation projected for many regions of the world," he said.

In addition to ARS funding, the research is supported by grants from the National Science Foundation, the U.S. Department of Energy, and USDA's National Institute of Food and Agriculture.

Don Comis | EurekAlert!
Further information:
http://www.ars.usda.gov

Further reports about: ARS Agricultural Research CO2 CO2 levels Carbon agriculture dioxide warmer temperatures

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>