Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


USDA researchers, collaborators sequence genomes of fungi that threaten wheat, poplars

An international team of researchers co-led by a U.S. Department of Agriculture (USDA) scientist has sequenced the genomes of two fungal pathogens-one that threatens global wheat supplies and another that limits production of a tree crop valued as a future source for biofuel.

The sequencing of the genetic codes of wheat stem rust pathogen (Puccinia graminis) and poplar leaf rust pathogen (Melampsora larici-populina) is expected to help researchers develop control strategies to address worldwide threats to wheat fields and tree plantations.

The study, published in the Proceedings of the National Academy of Sciences, was a six-year collaborative effort of USDA's Agricultural Research Service (ARS), the U.S. Department of Energy Joint Genome Institute, the National Science Foundation, the Broad Institute of Harvard and the Massachusetts Institute of Technology, the University of Minnesota and the French National Institute for Agricultural Research.

"The threats these pathogens pose to two essential agricultural products are very real, and that makes it important to learn everything we can about them, from their molecular underpinnings to how they survive and spread infection," said Edward B. Knipling, administrator of ARS, USDA's principal intramural scientific research agency. The research supports the USDA priority of developing new sources of bioenergy and promoting international food security.

Wheat stem rust causes major epidemics of both barley and wheat worldwide. A strain known as Ug99 has spread across Africa and into Central Asia, and has been able to overcome most of the stem-rust-resistant wheat varieties developed over the past 50 years.

Poplar leaf rust can cause significant losses in poplar tree plantations. Poplar is an important crop for the wood industry and is becoming increasingly important to the biofuel industry in the United States and Europe because of its rapid and significant production of biomass.

The study represents the first genome-wide characterization of any rust fungus, a diverse group of more than 6,000 species, according to Les Szabo, a lead researcher on this project. Szabo works at the ARS Cereal Disease Laboratory in St. Paul, Minn.

Rust fungi depend on living tissue of their hosts for survival. The pathogens secrete proteins that enable them to block the host plant's defenses and steal nutrients. The research uncovered evidence that both pathogens have large numbers of such "effector" proteins, an indication that they likely co-evolved with their host plants, according to the study authors.

Because they need a plant host to survive, the pathogens can't be cultured in a laboratory and are notoriously hard to study. But the genetic sequencing opens a window into the never-ending arms race between these pathogens and their hosts, Szabo said.

The team's sequence data has been released in GenBank, a genetic database administered by the National Center for Biotechnology Information at the National Institutes of Health.

USDA is an equal opportunity provider, employer and lender. To file a complaint of discrimination, write: USDA, Director, Office of Civil Rights, 1400 Independence Ave., S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice), or (202) 720-6382 (TDD).

Dennis O'Brien | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>