Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two neonicotinoid insecticides may have inadvertent contraceptive effects on male honey bees

27.07.2016

Male honey bees, called drones, can be affected by two neonicotinoid insecticides by reducing male honey bee lifespan and number of living sperm. Both insecticides are currently partially banned in Europe. Researchers from Bern, Switzerland, together with partners from Thailand and Germany, call for more thorough environmental risk assessments of these neonicotinoids.

In recent years, beekeepers have struggled to maintain healthy honey bee colonies throughout the northern hemisphere. In the first study to investigate the effects of neonicotinoids on drones, and one of the first to study the effects of these agricultural chemicals on males in general, an international research team led by the University of Bern and Agroscope has found that two neonicotinoids may inadvertently reduce drone lifespan and number of living sperm.


A newly emerged male honey bee, known as a drone, on a wax bee frame.

© Geoffrey Williams, University of Bern / Agroscope.


Fluorescence microscopy revealing living (stained bluish-green) and dead (stained red) male honey bee sperm.

© Lars Straub, University of Bern

Because queen survival and queen productivity are intimately connected to successful mating with males, any influence on sperm quality may have profound consequences for the health of the queen, as well as the entire colony. In light of recent beekeeper surveys that identified poor queen health as an important reason for honey bee colony losses, this study further strengthens calls for more thorough environmental risk assessments of these insecticides, as well as other crop protection products, to protect bees and other beneficial organisms.

‘We know multiple stressors can affect honey bee health, including parasites and poor nutrition. It is possible that agricultural chemicals may also play an important role’, says senior author Geoff Williams of the University of Bern and Agroscope. In 2013, the European Union and Switzerland took a precautionary approach by partially restricting the application of the widely used neonicotinoid insecticides thiamethoxam, clothianidin, and imidacloprid, with the mandate to perform further environmental risk assessments.

A new inter-governmental review is currently taking place. Previous research suggests that these chemicals cause both lethal and sub-lethal effects on honey bee females from exposure, but nothing is known about how they may affect males of the species.

A research team from the institutes of bee health and veterinary public health at the University of Bern (Switzerland) and Agroscope at the Swiss Confederation (Switzerland), alongside collaborators from Chiang Mai University and Mae Fah Luang University (Thailand) and the University of Koblenz-Landau (Germany) recently demonstrated in an article in the prestigious scientific journal Proceedings of the Royal Society of London B: Biological Sciences that male honey bees, also called drones, are vulnerable to the neonicotinoids thiamethoxam and clothianidin.

Reduced longevity and sperm quality

The study showed that males maintained in the laboratory after colony-level exposure had a shorter lifespan and produced fewer living sperm. This could have important consequences for colonies because queens, which are essential to colony functioning, must be properly inseminated with healthy sperm from multiple males. Factors affecting the health of drones could therefore have profound consequences not just for the queen, but for the entire colony, as replacement of poorly mated queens is resource intensive and not without risks.

‘Most neonicotinoid studies that employ honey bees have focused on workers, which are typically the non-reproductive females of the colony. Male honey bees have really been neglected by honey bee health scientists; while not surprising, these results may turn a few heads’, says lead author and doctoral student Lars Straub from the University of Bern. Co-author Peter Neumann from Bern states ‘these results, coupled with the importance of males to honey bee reproduction, highlight the need for stringent environmental risk assessments of agricultural chemicals to protect biodiversity and ecosystem functioning.’

Bees, pollination, and honey

Honey bees, like all insect pollinators, provide crucial ecosystem and economic services. Annually in Europe and North America, millions of honey bee colonies produce honey and contribute to the pollination of a range of agricultural crops – from carrots to almonds to oilseed rape – that is valued at billions of Euros.

Publication details:

Straub, L., Villamar-Bouza, L., Bruckner, S., Chantawannakul, P., Gauthier, L., Khongphinitbunjong, K., Retschnig, G., Troxler, A., Vidondo, B., Neumann, P., Williams, G.R. 2016. Neonicotinoid insecticides can serve as inadvertent insect contraceptives. Proc. R. Soc. B 20160506 doi: 10.1098/rspb.2016.0506. Available at: http://dx.doi.org/10.1098/rspb.2016.0506

Weitere Informationen:

http://www.unibe.ch/news/media_news/media_relations_e/media_releases/2016_e/medi...

Nathalie Matter | Universität Bern

More articles from Agricultural and Forestry Science:

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

nachricht Maize pest exploits plant defense compounds to protect itself
28.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>