Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better sweet corn research, better production

30.01.2014
While grain yield is economically important in field corn production, there are other metrics more important in sweet corn grown for processing, said Marty Williams, a USDA-ARS ecologist and University of Illinois crop sciences researcher.

In a study recently published in Field Crops Research, Williams questioned whether the crop yield responses that have been previously reported in sweet corn research are actually helpful to the industry.

"What has been done in the past is analogous to predicting someone's height based on their shoe size, as opposed to actually measuring their height," Williams said.

After collecting and studying sweet corn data representing 31 hybrids across 22 locations in Illinois over an 8-year period, Williams said he sees a disconnect in what researchers are measuring in the field and what processors and seed companies need to know in order to make improved production decisions.

In other words, Williams said researchers need to start speaking the same language as the sweet corn industry.

Williams explained that the two variables that affect processor decisions most include recovery (percentage of kernels that can be canned or bagged from the green-ear mass) and case production (cases per acre of processed kernels).

However, he added that nearly all historic and recent field research in processing sweet corn reports neither of these variables, regardless of whether the studies pertained to plant pathology, fertility management, pest control, or sweet corn breeding and genetics.

"Ear number or green-ear mass are often the only crop responses reported in research on field productivity of processing sweet corn. Sometimes, other crop responses are reported, including plant traits such as height or canopy density, or ear traits such as ear length or ear width," he said.

In his study, Williams looked for relationships between processor variables and 17 crop traits (5 plant traits, 8 ear traits, and 4 yield traits). He determined that none of the crop traits predicted recovery.

"Recovery is something that has to be measured directly. Currently, there's no way to predict it," he explained.

When comparing the variability of the estimates in case production based on traits such as green-ear mass, husked-ear mass, and ear number, he determined that fresh kernel mass also was a far superior predictor of case production.

"Essentially, the more a measured yield response physically resembled a case of sweet corn, the more precise and accurate the estimate of case production," he reported.

The challenge in getting the necessary data is the costs associated with the equipment and labor, according to Williams.

In order to collect information on fresh kernel mass, Williams and his team designed and built a portable, "mini-processing plant" that they use in the field at harvest to husk ears and cut fresh kernels.

"At the moment there isn't a viable alternative that's less expensive," he said. "Does the research community continue to report mediocre data, or do we invest in an approach that gives the sweet corn industry exactly what it needs to make use of our research?"

Another obstacle is the narrow window of time when sweet corn is harvested, usually by hand, for research. Though field corn for grain production is harvested at physiological maturity, sweet corn is harvested at the R3 stage (milk stage), while kernel moisture is at approximately 72 to 76 percent. "When sweet corn is ripe, waiting is not an option," Williams explained.

A change in the way sweet corn research is done will have an impact on how processors, growers, and seed companies make decisions in the future, according to the researcher.

"Applied research aimed at improving crop productivity is predicated on the ability to accurately measure important crop responses, such as yield. For processing sweet corn, the most important responses include recovery and case production," he said. "Those of us in the research community can't expect the sweet corn industry to adopt our research-based findings when we're failing to measure what's truly important."

"Few crop traits accurately predict variables important to productivity of processing sweet corn," is published in the February 2014 issue of Field Crops Research and can be accessed online at http://www.sciencedirect.com/science/article/pii/S0378429013004073.

Martin Williams | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>