Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better sweet corn research, better production

30.01.2014
While grain yield is economically important in field corn production, there are other metrics more important in sweet corn grown for processing, said Marty Williams, a USDA-ARS ecologist and University of Illinois crop sciences researcher.

In a study recently published in Field Crops Research, Williams questioned whether the crop yield responses that have been previously reported in sweet corn research are actually helpful to the industry.

"What has been done in the past is analogous to predicting someone's height based on their shoe size, as opposed to actually measuring their height," Williams said.

After collecting and studying sweet corn data representing 31 hybrids across 22 locations in Illinois over an 8-year period, Williams said he sees a disconnect in what researchers are measuring in the field and what processors and seed companies need to know in order to make improved production decisions.

In other words, Williams said researchers need to start speaking the same language as the sweet corn industry.

Williams explained that the two variables that affect processor decisions most include recovery (percentage of kernels that can be canned or bagged from the green-ear mass) and case production (cases per acre of processed kernels).

However, he added that nearly all historic and recent field research in processing sweet corn reports neither of these variables, regardless of whether the studies pertained to plant pathology, fertility management, pest control, or sweet corn breeding and genetics.

"Ear number or green-ear mass are often the only crop responses reported in research on field productivity of processing sweet corn. Sometimes, other crop responses are reported, including plant traits such as height or canopy density, or ear traits such as ear length or ear width," he said.

In his study, Williams looked for relationships between processor variables and 17 crop traits (5 plant traits, 8 ear traits, and 4 yield traits). He determined that none of the crop traits predicted recovery.

"Recovery is something that has to be measured directly. Currently, there's no way to predict it," he explained.

When comparing the variability of the estimates in case production based on traits such as green-ear mass, husked-ear mass, and ear number, he determined that fresh kernel mass also was a far superior predictor of case production.

"Essentially, the more a measured yield response physically resembled a case of sweet corn, the more precise and accurate the estimate of case production," he reported.

The challenge in getting the necessary data is the costs associated with the equipment and labor, according to Williams.

In order to collect information on fresh kernel mass, Williams and his team designed and built a portable, "mini-processing plant" that they use in the field at harvest to husk ears and cut fresh kernels.

"At the moment there isn't a viable alternative that's less expensive," he said. "Does the research community continue to report mediocre data, or do we invest in an approach that gives the sweet corn industry exactly what it needs to make use of our research?"

Another obstacle is the narrow window of time when sweet corn is harvested, usually by hand, for research. Though field corn for grain production is harvested at physiological maturity, sweet corn is harvested at the R3 stage (milk stage), while kernel moisture is at approximately 72 to 76 percent. "When sweet corn is ripe, waiting is not an option," Williams explained.

A change in the way sweet corn research is done will have an impact on how processors, growers, and seed companies make decisions in the future, according to the researcher.

"Applied research aimed at improving crop productivity is predicated on the ability to accurately measure important crop responses, such as yield. For processing sweet corn, the most important responses include recovery and case production," he said. "Those of us in the research community can't expect the sweet corn industry to adopt our research-based findings when we're failing to measure what's truly important."

"Few crop traits accurately predict variables important to productivity of processing sweet corn," is published in the February 2014 issue of Field Crops Research and can be accessed online at http://www.sciencedirect.com/science/article/pii/S0378429013004073.

Martin Williams | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>