Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better sweet corn research, better production

30.01.2014
While grain yield is economically important in field corn production, there are other metrics more important in sweet corn grown for processing, said Marty Williams, a USDA-ARS ecologist and University of Illinois crop sciences researcher.

In a study recently published in Field Crops Research, Williams questioned whether the crop yield responses that have been previously reported in sweet corn research are actually helpful to the industry.

"What has been done in the past is analogous to predicting someone's height based on their shoe size, as opposed to actually measuring their height," Williams said.

After collecting and studying sweet corn data representing 31 hybrids across 22 locations in Illinois over an 8-year period, Williams said he sees a disconnect in what researchers are measuring in the field and what processors and seed companies need to know in order to make improved production decisions.

In other words, Williams said researchers need to start speaking the same language as the sweet corn industry.

Williams explained that the two variables that affect processor decisions most include recovery (percentage of kernels that can be canned or bagged from the green-ear mass) and case production (cases per acre of processed kernels).

However, he added that nearly all historic and recent field research in processing sweet corn reports neither of these variables, regardless of whether the studies pertained to plant pathology, fertility management, pest control, or sweet corn breeding and genetics.

"Ear number or green-ear mass are often the only crop responses reported in research on field productivity of processing sweet corn. Sometimes, other crop responses are reported, including plant traits such as height or canopy density, or ear traits such as ear length or ear width," he said.

In his study, Williams looked for relationships between processor variables and 17 crop traits (5 plant traits, 8 ear traits, and 4 yield traits). He determined that none of the crop traits predicted recovery.

"Recovery is something that has to be measured directly. Currently, there's no way to predict it," he explained.

When comparing the variability of the estimates in case production based on traits such as green-ear mass, husked-ear mass, and ear number, he determined that fresh kernel mass also was a far superior predictor of case production.

"Essentially, the more a measured yield response physically resembled a case of sweet corn, the more precise and accurate the estimate of case production," he reported.

The challenge in getting the necessary data is the costs associated with the equipment and labor, according to Williams.

In order to collect information on fresh kernel mass, Williams and his team designed and built a portable, "mini-processing plant" that they use in the field at harvest to husk ears and cut fresh kernels.

"At the moment there isn't a viable alternative that's less expensive," he said. "Does the research community continue to report mediocre data, or do we invest in an approach that gives the sweet corn industry exactly what it needs to make use of our research?"

Another obstacle is the narrow window of time when sweet corn is harvested, usually by hand, for research. Though field corn for grain production is harvested at physiological maturity, sweet corn is harvested at the R3 stage (milk stage), while kernel moisture is at approximately 72 to 76 percent. "When sweet corn is ripe, waiting is not an option," Williams explained.

A change in the way sweet corn research is done will have an impact on how processors, growers, and seed companies make decisions in the future, according to the researcher.

"Applied research aimed at improving crop productivity is predicated on the ability to accurately measure important crop responses, such as yield. For processing sweet corn, the most important responses include recovery and case production," he said. "Those of us in the research community can't expect the sweet corn industry to adopt our research-based findings when we're failing to measure what's truly important."

"Few crop traits accurately predict variables important to productivity of processing sweet corn," is published in the February 2014 issue of Field Crops Research and can be accessed online at http://www.sciencedirect.com/science/article/pii/S0378429013004073.

Martin Williams | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Agricultural and Forestry Science:

nachricht Recycled Water, Salt-Tolerant Grass a Water-Saving Pair
29.06.2015 | American Society of Agronomy (ASA), Crop Science Society of America (CSSA), Soil Science Society of America (SSSA)

nachricht Selective breeding and immunization improve fish farm yields
29.06.2015 | Universiti Putra Malaysia (UPM)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

Im Focus: Lasers for Fast Internet in Space – Space Technology from Aachen

On June 23, the second Sentinel mission was launched from the space mission launch center in Kourou. A critical component of Aachen is on board. Researchers at the Fraunhofer Institute for Laser Technology ILT and Tesat-Spacecom have jointly developed the know-how for space-qualified laser components. For the Sentinel mission the diode laser pump module of the Laser Communication Terminal LCT was planned and constructed in Aachen in cooperation with the manufacturer of the LCT, Tesat-Spacecom, and the Ferdinand Braun Institute.

After eight years of preparation, in the early morning of June 23 the time had come: in Kourou in French Guiana, the European Space Agency launched the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Offshore wind park Westermost Rough officially inaugurated

01.07.2015 | Press release

Siemens Velaro train wins "Red Dot" award

01.07.2015 | Awards Funding

Liquids on Fibers - Slipping or Flowing?

01.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>