Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smarter toxins help crops fight resistant pests

11.10.2011
A slight change in molecular structure introduced by genetic engineering gives crop-protecting proteins called Bt toxins a new edge in overcoming resistance of certain pests, a UA-led team of researchers reports in Nature Biotechnology

One of the most successful strategies in pest control is to endow crop plants with genes from the bacterium Bacillus thuringiensis, or Bt for short, which code for proteins that kill pests attempting to eat them.

But insect pests are evolving resistance to Bt toxins, which threatens the continued success of this approach. In the current issue of Nature Biotechnology, a research team led by UA Professor Bruce Tabashnik reports the discovery that a small modification of the toxins' structure overcomes the defenses of some major pests that are resistant to the natural, unmodified Bt toxins.

“A given Bt toxin only kills certain insects that have the right receptors in their gut,” explained Tabashnik, head of the UA’s entomology department in the College of Agriculture and Life Sciences. “This is one reason why Bt toxins are an environmentally friendly way to control pests,” he said. “They don’t kill indiscriminately. Bt cotton, for example, will not kill bees, lady bugs, and other beneficial insects.”

Unlike conventional broad-spectrum insecticides, Bt toxins kill only a narrow range of species because their potency is determined by a highly specific binding interaction with receptors on the surface of the insects’ gut cells, similar to a key that only fits a certain lock.

“If you change the lock, it won’t work,” Tabashnik said. “Insects adapt through evolutionary change. Naturally occurring mutations are out there in the insect populations, and those individuals that carry genes that make them resistant to the Bt toxins have a selective advantage.”

The more a toxin is used, the more likely it is pests will adapt. Bt toxins have been used in sprays for decades. Crops that make Bt toxins were commercialized 15 years ago and covered more than 140 million acres worldwide in 2010, according to Tabashnik.

In a joint effort with Alejandra Bravo and Mario Soberón at the Universidad Nacional Autónoma de México (UNAM), Tabashnik’s team set out to better understand how Bt toxins work and to develop countermeasures to control resistant pests.

“Our collaborators developed detailed models about each step at the molecular level,” Tabashnik said, “what receptors the toxins bind to, which enzymes they interact with and so on.”

Previous work had demonstrated that binding of Bt toxins to a cadherin protein in the insect gut is a key step in the process that ultimately kills the insect. Results at UNAM indicated that binding of Bt toxins to cadherin promotes the next step - trimming of a small portion of the toxins by the insect's enzymes. Meanwhile, Tabashnik's team identified lab-selected resistant strains of a major cotton pest, pink bollworm (Pectinophora gossypiella), in which genetic mutations altered cadherin and thereby reduced binding of Bt toxins.

The findings from UNAM and UA considered together implied that in resistant strains of the pest, naturally occurring genetic mutations changed the lock -- the cadherin receptor -- so that Bt toxin – the key – no longer fits. As a result, the trimming does not occur, the whole chain of events is stopped in its tracks, and the insects survive.

Said Tabashnik: “So our collaborators in Mexico asked, ‘Why don’t we trim the toxin ourselves, by using genetic engineering to create modified Bt toxins that no longer need the intact cadherin receptor to kill the pests?’”

In initial tests, the researchers found that the modified toxins killed caterpillars of the tobacco hornworm, Manduca sexta, in which production of cadherin was blocked by a technique called RNA interference. The modified toxins also killed resistant pink bollworm caterpillars carrying mutations that altered their cadherin.

“Those experiments led us to hypothesize that any insect carrying a mutant cadherin receptor as a mechanism of resistance would be killed by the modified Bt toxins,” Tabashnik said.

To find out, the team invited colleagues from all over the world to participate in an ambitious experiment. “We sent them native and modified toxins without telling them which was which and asked them to test both types of toxins against the resistant strains they have in their labs,” Tabashnik said.

It turned out things are more complicated than the hypothesis predicted. The modified toxins did not always work on insects with cadherin mutations, and they worked surprisingly well against some insects whose resistance was not caused by a cadherin mutation.

“We still don’t know why the modified toxins were so effective against some resistant strains and not others” Tabashnik said. “The take-home message is we need to look at this on a case-by-case basis.”

Tabashnik pointed out that “based on the lab results, we think the modified Bt toxins could be useful, but we won’t know until they're tested in the field.” He said the results are promising enough that Pioneer, a major agriculture and biotechnology company, made a significant investment to pursue the technology.

Through the UA’s Office of Technology Transfer, the UA's stake in the technology has been licensed to UNAM, which in turn selected Pioneer as their commercial partner in exploring its potential for commercialization.

“At the very least, we've learned more about the pests and their interactions with Bt toxins, ” Tabashnik said. “In a best-case scenario, this could help growers sustain environmentally friendly pest control.”

In addition to Tabashnik, Bravo and Soberón, the following co-authors have contributed to this study: Fangneng Huang, B. Rogers Leonard and Mukti Ghimire at Louisiana State University Agricultural Center in Baton Rouge, La.; Blair Siegfried and Murugesan Rangasamy at the University of Nebraska in Lincoln, Neb.; Yajun Yang and Yidong Wu at Nanjing Agricultural University in Nanjing, China; Linda Gahan at Clemson University in Clemson, S.C.; David Heckel at the Max Planck Institute for Chemical Ecology in Jena, Germany.

The report, "Efficacy of genetically modified Bt toxins against insects with different genetic mechanisms of resistance," will be published as an advance online publication on Nature Biotechnology's website on Oct. 9, 2011.

The DOI for the paper will be 10.1038/10.1038/nbt.1988. Once the paper is published electronically, the DOI can be used to retrieve the abstract and full text (abstracts are available to everyone, full text only to subscribers) by adding it to the following URL: http://dx.doi.org/

Daniel Stolte | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>