Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster breeding from using markers in bull selection

27.11.2007
Cattle breeding is slow work. Hereditary response can be accelerated, however, with the aid of gene mapping. Use of DNA markers enables greater precision in choice of the best animals, and the selection of animals at a younger age.

For her doctoral dissertation, Research Scientist Nina Schulman from MTT Agrifood Research Finland has identified quantitative trait loci (QTL) affecting milk production, fertility and health traits in Finnish Ayrshire cattle, and evaluated the extent to which the use of QTL information, or marker-assisted selection (MAS), might improve dairy cattle breeding.

GENES STILL IN HIDING

Traditional dairy cattle breeding is founded on production information and other phenotype information collected from animals. The greater the volume of genealogical information available, the more accurate the evaluation that can be made of an animal’s breeding value. Evaluation based on offspring, the progeny test, is an efficient, if slow method of acquiring reliable information on the bull genome. Progeny test information for a young bull is only obtained five years after the onset of semination.

The breeder’s dream is to be able to study animal genes and decide from them directly which individuals are worth selecting as parents of the future generation. Variations in the genomic loci present in the DNA of chromosomes, known as markers, can be employed in the monitoring of gene inheritance.

From the available material on 12 parent bulls and their 493 sons, Nina Schulman’s research identified which QTL are connected with particular economically important traits. Twelve different traits were studied: milk yield, protein yield, protein content, fat yield, fat content, somatic cell score (SCS), mastitis treatments, other veterinary treatments, days open, fertility treatments, non-return rate, and calf mortality. Approximately 150 different markers from 29 chromosomes were typed in the whole genome scans performed on Finnish Ayrshire bulls.

MARKERS ACCELERATE BREEDING

A total of fourteen QTL affecting milk production were detected. Research results included interesting QTL affecting protein and fat yield, and mastitis and fertility.

The second part of the dissertation centred on investigation of the use of genetic markers in the breeding scheme. Research simulated how the selection of animals on the basis of genetic markers would have succeeded in comparison to selection based on the traditional evaluation.

In simulating marker-assisted selection Schulman observed that genetic response was faster with MAS than with traditional selection.

The results of the simulation study demonstrate that marker-assisted selection, combined with embryo transfer, offers a viable alternative to conventional selection by increasing genetic response. In this way young bulls can be preselected within families on the basis of marker information, employing evaluation using offspring information only for the best animals.

Ulla Jauhiainen | alfa
Further information:
http://www.mtt.fi/english/press/pressrelease.html

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>