Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster breeding from using markers in bull selection

27.11.2007
Cattle breeding is slow work. Hereditary response can be accelerated, however, with the aid of gene mapping. Use of DNA markers enables greater precision in choice of the best animals, and the selection of animals at a younger age.

For her doctoral dissertation, Research Scientist Nina Schulman from MTT Agrifood Research Finland has identified quantitative trait loci (QTL) affecting milk production, fertility and health traits in Finnish Ayrshire cattle, and evaluated the extent to which the use of QTL information, or marker-assisted selection (MAS), might improve dairy cattle breeding.

GENES STILL IN HIDING

Traditional dairy cattle breeding is founded on production information and other phenotype information collected from animals. The greater the volume of genealogical information available, the more accurate the evaluation that can be made of an animal’s breeding value. Evaluation based on offspring, the progeny test, is an efficient, if slow method of acquiring reliable information on the bull genome. Progeny test information for a young bull is only obtained five years after the onset of semination.

The breeder’s dream is to be able to study animal genes and decide from them directly which individuals are worth selecting as parents of the future generation. Variations in the genomic loci present in the DNA of chromosomes, known as markers, can be employed in the monitoring of gene inheritance.

From the available material on 12 parent bulls and their 493 sons, Nina Schulman’s research identified which QTL are connected with particular economically important traits. Twelve different traits were studied: milk yield, protein yield, protein content, fat yield, fat content, somatic cell score (SCS), mastitis treatments, other veterinary treatments, days open, fertility treatments, non-return rate, and calf mortality. Approximately 150 different markers from 29 chromosomes were typed in the whole genome scans performed on Finnish Ayrshire bulls.

MARKERS ACCELERATE BREEDING

A total of fourteen QTL affecting milk production were detected. Research results included interesting QTL affecting protein and fat yield, and mastitis and fertility.

The second part of the dissertation centred on investigation of the use of genetic markers in the breeding scheme. Research simulated how the selection of animals on the basis of genetic markers would have succeeded in comparison to selection based on the traditional evaluation.

In simulating marker-assisted selection Schulman observed that genetic response was faster with MAS than with traditional selection.

The results of the simulation study demonstrate that marker-assisted selection, combined with embryo transfer, offers a viable alternative to conventional selection by increasing genetic response. In this way young bulls can be preselected within families on the basis of marker information, employing evaluation using offspring information only for the best animals.

Ulla Jauhiainen | alfa
Further information:
http://www.mtt.fi/english/press/pressrelease.html

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>