Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism for the captation of nutrients in plants- unknown to date

06.05.2005


Up to now it was thought that nutrients penetrated the interior of plant cells by means of substance-specific transporters. Nevertheless, researchers at the Agrobiotechnology Institute at the Public University of Navarra have shown that the nutrients (saccharose, amino-acids, etc.) penetrate the cells basically through an “endocitic”, mechanism similar to fagocitosis, and induced by saccharose. This finding, carried by the latest issue of the Japanese journal, Plant Cell Physiology, will enable the design of experiments aimed at enhancing vegetable species in the interest of humanity.



Researchers at the Institute have shown that, in the presence of saccharose (a substance produced in leaves to be subsequently distributed around the plant), the cells of the reserve organs - such as roots, tubers, seeds or fruits - “swallow up” nutrients in order to metabolise and store them. These “swallowed-up” substances are incorporated into micro-vesicles that end up pouring their contents into an internal compartment of a vegetable cell known as the vacuola. Once inside the vacuola, the substances or nutrients are broken up, stored and metabolised.

Two processes of captation


This discovery breaks with a fundamental dogma in basic plant science holding that all substances penetrate the interior of the cell through the participation of specific transporters present in the plasma membranes - a model implying that, if hundreds of substances enter vegetable cells and each substance has its specific transporter, or even if one transporter can recognise 3 or 4 different substances, an infinity of such transporters would be required.

The conclusion of this research is that, while not discarding the existence of specific transporters in plasma membranes, their number and relevance is considerably inferior to what has been believed to date. In the absence of saccharose, nutrients can penetrate the cell by means of transporters, but the amount entering through this mechanism is less than that incorporated via endocitosis.

Thus, the experiments carried out showed the existence of processes independent of nutrient captation: a saccharose penetration process independent of “endocitosis” and another dependent on “endocitosis” and which required approximately 90 minutes from the time the cell started to capture saccharose in order to start functioning. That is, for these first 90 minutes, the saccharose penetrates using the transporter mechanism while, parallely, the endocitosis phenomenon is activated to form microvesicles. Subsequently, the cell starts to capture huge quantities of saccharose through endocitosis.

The results of the research has shown, moreover, that only saccharose is capable of initiating endocitosis, given that, in the trials undertaken with substances similar to saccharose, such as glucose or fructose, the fact that none of these triggered the process could be confirmed.

Moreover, given that endocitosis is involved in the acquisition of substances for their subsequent conversion into "end products" (such as starch, oils, celluloses, etc.), basic knowledge of this mechanism provides great tips for the rational design of experiments aimed at enhancing vegetable species in the interest of humanity.

One of the great questions thrown up by the fact that saccharose pick-up is produced via endocitosis is, fundamentally, to find out if the saccharose captured through endocitosis is that involved in starch production. If this is the case, it will be necessary to discover what are the genetic and molecular mechanisms involved in the process, in order to improve the plant varieties. For example, in order to increase starch production in potato or maize, endocitosis would have to be encouraged through the stimulation of the genes involved in the formation of the vesicles – a hypothesis that is currently being verified.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>