Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism for the captation of nutrients in plants- unknown to date

06.05.2005


Up to now it was thought that nutrients penetrated the interior of plant cells by means of substance-specific transporters. Nevertheless, researchers at the Agrobiotechnology Institute at the Public University of Navarra have shown that the nutrients (saccharose, amino-acids, etc.) penetrate the cells basically through an “endocitic”, mechanism similar to fagocitosis, and induced by saccharose. This finding, carried by the latest issue of the Japanese journal, Plant Cell Physiology, will enable the design of experiments aimed at enhancing vegetable species in the interest of humanity.



Researchers at the Institute have shown that, in the presence of saccharose (a substance produced in leaves to be subsequently distributed around the plant), the cells of the reserve organs - such as roots, tubers, seeds or fruits - “swallow up” nutrients in order to metabolise and store them. These “swallowed-up” substances are incorporated into micro-vesicles that end up pouring their contents into an internal compartment of a vegetable cell known as the vacuola. Once inside the vacuola, the substances or nutrients are broken up, stored and metabolised.

Two processes of captation


This discovery breaks with a fundamental dogma in basic plant science holding that all substances penetrate the interior of the cell through the participation of specific transporters present in the plasma membranes - a model implying that, if hundreds of substances enter vegetable cells and each substance has its specific transporter, or even if one transporter can recognise 3 or 4 different substances, an infinity of such transporters would be required.

The conclusion of this research is that, while not discarding the existence of specific transporters in plasma membranes, their number and relevance is considerably inferior to what has been believed to date. In the absence of saccharose, nutrients can penetrate the cell by means of transporters, but the amount entering through this mechanism is less than that incorporated via endocitosis.

Thus, the experiments carried out showed the existence of processes independent of nutrient captation: a saccharose penetration process independent of “endocitosis” and another dependent on “endocitosis” and which required approximately 90 minutes from the time the cell started to capture saccharose in order to start functioning. That is, for these first 90 minutes, the saccharose penetrates using the transporter mechanism while, parallely, the endocitosis phenomenon is activated to form microvesicles. Subsequently, the cell starts to capture huge quantities of saccharose through endocitosis.

The results of the research has shown, moreover, that only saccharose is capable of initiating endocitosis, given that, in the trials undertaken with substances similar to saccharose, such as glucose or fructose, the fact that none of these triggered the process could be confirmed.

Moreover, given that endocitosis is involved in the acquisition of substances for their subsequent conversion into "end products" (such as starch, oils, celluloses, etc.), basic knowledge of this mechanism provides great tips for the rational design of experiments aimed at enhancing vegetable species in the interest of humanity.

One of the great questions thrown up by the fact that saccharose pick-up is produced via endocitosis is, fundamentally, to find out if the saccharose captured through endocitosis is that involved in starch production. If this is the case, it will be necessary to discover what are the genetic and molecular mechanisms involved in the process, in order to improve the plant varieties. For example, in order to increase starch production in potato or maize, endocitosis would have to be encouraged through the stimulation of the genes involved in the formation of the vesicles – a hypothesis that is currently being verified.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

IVAM’s LaserForum visits the Swiss canton of St. Gallen with the topic ultrashort pulse lasers

06.09.2017 | Event News

 
Latest News

Robust and functional – surface finishing by suspension spraying

19.09.2017 | Materials Sciences

The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships

19.09.2017 | Earth Sciences

Digging sensors out of an efficiency hole

19.09.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>