Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism for the captation of nutrients in plants- unknown to date

06.05.2005


Up to now it was thought that nutrients penetrated the interior of plant cells by means of substance-specific transporters. Nevertheless, researchers at the Agrobiotechnology Institute at the Public University of Navarra have shown that the nutrients (saccharose, amino-acids, etc.) penetrate the cells basically through an “endocitic”, mechanism similar to fagocitosis, and induced by saccharose. This finding, carried by the latest issue of the Japanese journal, Plant Cell Physiology, will enable the design of experiments aimed at enhancing vegetable species in the interest of humanity.



Researchers at the Institute have shown that, in the presence of saccharose (a substance produced in leaves to be subsequently distributed around the plant), the cells of the reserve organs - such as roots, tubers, seeds or fruits - “swallow up” nutrients in order to metabolise and store them. These “swallowed-up” substances are incorporated into micro-vesicles that end up pouring their contents into an internal compartment of a vegetable cell known as the vacuola. Once inside the vacuola, the substances or nutrients are broken up, stored and metabolised.

Two processes of captation


This discovery breaks with a fundamental dogma in basic plant science holding that all substances penetrate the interior of the cell through the participation of specific transporters present in the plasma membranes - a model implying that, if hundreds of substances enter vegetable cells and each substance has its specific transporter, or even if one transporter can recognise 3 or 4 different substances, an infinity of such transporters would be required.

The conclusion of this research is that, while not discarding the existence of specific transporters in plasma membranes, their number and relevance is considerably inferior to what has been believed to date. In the absence of saccharose, nutrients can penetrate the cell by means of transporters, but the amount entering through this mechanism is less than that incorporated via endocitosis.

Thus, the experiments carried out showed the existence of processes independent of nutrient captation: a saccharose penetration process independent of “endocitosis” and another dependent on “endocitosis” and which required approximately 90 minutes from the time the cell started to capture saccharose in order to start functioning. That is, for these first 90 minutes, the saccharose penetrates using the transporter mechanism while, parallely, the endocitosis phenomenon is activated to form microvesicles. Subsequently, the cell starts to capture huge quantities of saccharose through endocitosis.

The results of the research has shown, moreover, that only saccharose is capable of initiating endocitosis, given that, in the trials undertaken with substances similar to saccharose, such as glucose or fructose, the fact that none of these triggered the process could be confirmed.

Moreover, given that endocitosis is involved in the acquisition of substances for their subsequent conversion into "end products" (such as starch, oils, celluloses, etc.), basic knowledge of this mechanism provides great tips for the rational design of experiments aimed at enhancing vegetable species in the interest of humanity.

One of the great questions thrown up by the fact that saccharose pick-up is produced via endocitosis is, fundamentally, to find out if the saccharose captured through endocitosis is that involved in starch production. If this is the case, it will be necessary to discover what are the genetic and molecular mechanisms involved in the process, in order to improve the plant varieties. For example, in order to increase starch production in potato or maize, endocitosis would have to be encouraged through the stimulation of the genes involved in the formation of the vesicles – a hypothesis that is currently being verified.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>