Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists unravel the genetic coding of the pea

26.02.2008
The pea is one of many important crop species that is unsuited to the Agrobacterium-based genetic modification techniques that are commonly used to work with crops. Researchers, reporting in the open access journal Genome Biology have now discovered the first high-throughput forward and reverse genetics tool for the pea (Pisum sativum), could have major benefits for crop breeders around the world.

Researchers from the INRA Plant Genomics Research Unit at Evry, and the INRA Grain Legumes Research Unit at Bretenières, both in France, developed a high-quality genetic reference collection of Pisum sativum mutants within the European Grain Legumes Integrated Project. Abdelhafid Bendahmane and colleagues used plants from an early-flowering garden pea cultivar, Caméor, to create a mutant population, which they then systematically phenotyped for use in both forward and reverse genetics studies.

The team set up a pea TILLING (Targeting Induced Local Lesions IN Genomes) platform with DNA samples from 4,704} plants. The TILLING technique overcomes the pea’s natural unsuitability to genetic modification techniques, and provides a powerful tool for investigating the role of essential genes. This new tool has implications for both basic science and for crop improvement. TILLING is an alternative to Agrobacterium-based techniques, and uses EMS (ethane methyl sulfonate) mutagenesis coupled with a gene-specific detection of single-nucleotide mutations. This reverse genetic strategy can be applied to all types of organisms and can be automated for high-throughput approaches.

Following this study, the researchers created a database called UTILLdb, which described each mutant plant at different developmental stages, (from seedling through to fruit maturation), and also incorporates digital images of the plants. UTILLdb contains phenotypic as well as sequence information on mutant genes, and can be searched for TILLING alleles of genes of interest, using the ‘BLAST’ tool, and for plant traits of interest, using keyword searches.

“By opening UTILLdb to the community, we hope to fulfil the expectations of both crop breeders and scientists who are using the pea as their model of study,” said research coordinator Abdelhafid Bendahmane.

Charlotte Webber | alfa
Further information:
http://genomebiology.com/
http://www.biomedcentral.com/

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>