Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New class of insecticides offers safer, more targeted mosquito control

02.04.2015

Purdue researchers have identified a new class of chemical insecticides that could provide a safer, more selective means of controlling mosquitoes that transmit key infectious diseases such as dengue, yellow fever and elephantiasis.

Known as dopamine receptor antagonists, the chemicals beat out the neurotransmitter dopamine to lock into protein receptors that span the mosquito cell membrane.


Purdue researchers Catherine Hill and Val Watts are designing insecticides that disrupt key molecules in disease-transmitting mosquitoes.

Credit: Purdue University / Tom Campbell

Disrupting the mechanics of dopamine - which plays important roles in cell signaling, movement, development and complex behaviors - eventually leads to the insect's death.

The researchers used the mosquito genome to pinpoint chemicals that will be more selective than current insecticides, which bind readily to molecules in humans and non-target insects, said Catherine Hill, professor of entomology and Showalter Faculty Scholar.

"These are sophisticated designer drugs," she said. "They're like personalized medicine for mosquitoes - but in this case, the medicine is lethal."

Hill's team showed that DAR antagonists have high potency for both the larval and adult stages of the Aedes aegypti mosquito - which transmits yellow fever, dengue and chikungunya - and Culex quinquefasciatus, the vector of West Nile virus and the disfiguring disease elephantiasis.

Effective pest control has historically been important in slowing the spread of mosquito-borne diseases. But overuse of antibiotics and insecticides has led to the rise of drug-resistant strains of infectious diseases and the emergence of mosquitoes that can withstand conventional pesticides, a "double whammy," Hill said.

"There's an urgent need for new insecticides," she said. "We are seeing a resurgence of infectious diseases that for the last 50 years we had the luxury of controlling with antibiotics and modern medicine. These diseases are increasingly going to become a problem for people everywhere."

The research team designed DAR antagonists to disrupt molecules that are crucial to mosquito survival. The chemicals are structurally distinct from existing insecticides and target a different biochemical path in the mosquito.

The team is mining a group of about 200 DAR antagonists to find the most promising chemicals for commercial products. The insecticides could be cost-effective compared with current products and would have low environmental impact because of their selectivity, Hill said.

The researchers are also taking steps to minimize the risk that the insecticides could bind with human dopamine receptors, said Val Watts, professor of medicinal chemistry and molecular pharmacology and co-author of the studies.

"Many of the compounds we've identified are selective for mosquito receptors versus human receptors - some at a more than one hundredfold," he said. "Also, some of these compounds are already used as treatments for diseases such as schizophrenia and depression. They are safely handled by physicians and pharmacists every day."

The tougher challenge may be ensuring the insecticides do not affect beneficial insects such as honeybees. While the researchers have identified chemicals that are highly selective for mosquito receptors, they are also exploring the possibility of heightening insecticide specificity by using allosteric modulators, molecules that act like dimmer switches, dialing up or down the cell's response to dopamine.

Similar protein receptors exist in the African malaria mosquito, the sand fly and the tsetse fly, suggesting that DAR antagonists could help control these disease-transmitting insects as well.

"We're going after all the big ones," Hill said.

###

The paper on the effectiveness of DAR antagonists in C. quinquefasciatus mosquitoes was published in PLoS Neglected Tropical Diseases and is available at http://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0003515

A proof-of-concept study on using DAR antagonists to control Ae. aegypti was published in The Journal of Pharmacology and Experimental Therapeutics and is available at http://jpet.aspetjournals.org/content/352/1/53.long

Funding for the research was provided by a U.S. Department of Defense Deployed War Fighter Project award, a Purdue Research Foundation Trask Innovation award, and the Indiana Clinical and Translational Sciences Institute, which is funded in part by the National Institutes of Health National Center for Advancing Translational Science.

Media Contact

Natalie van Hoose
nvanhoos@purdue.edu
765-496-2050

 @PurdueUnivNews

http://www.purdue.edu/ 

Natalie van Hoose | EurekAlert!

Further reports about: aegypti antibiotics chemicals diseases dopamine fly insecticides insects mosquito mosquito control mosquitoes

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>