Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Digestibility and nutritional value of whey co-products for weanling pigs

10.04.2012
New research from the University of Illinois sheds light on the nutritional value of whey powder and whey permeate as a lactose source for pigs.

"We wanted to determine the energy concentration and digestibility of phosphorus in whey powder, in conventional whey permeate, and in low-ash whey permeate because these values had not been determined," said Hans H. Stein, a U of I professor of animal sciences.

Skim milk powder has been used to meet the requirement for lactose by weanling pigs, but it is costly and usually uneconomical to use in commercial production. Whey powder, a co-product of the cheese industry, contains lactose and protein and is more economical to use in weanling pig diets, he said.

"Some companies take the protein out of whey powder because they sell it for the human food market," Stein explained. "When they take the protein out, they are left with whey permeate, which contains mainly lactose and ash."

In their study, the scientists used conventional whey powder—66 percent lactose, 13.2 percent crude protein, and 15.8 percent ash—and two permeate products. One of the permeates was a conventional whey permeate that contained approximately 76 percent lactose and 9 percent ash. Most of the ash had been removed from the other permeate product, which was approximately 89 percent lactose and only 1.7 percent ash.

The concentration of metabolizable energy and the standardized total tract digestibility of phosphorus were determined in all three ingredients using weanling pigs. Results indicated that the conventional whey permeate contains less metabolizable energy than whey powder (3,081 vs. 3,462 kcal per kg DM). However, the low-ash whey permeate contained 3,593 kcal metabolizable energy per kg DM.

"Removal of protein from whey powder resulted in a reduced concentration of metabolizable energy in the whey permeate. If ash is also removed, the resulting high-lactose, low-ash whey permeate has a concentration of metabolizable energy that is slightly greater than that in whey powder," Stein said.

The concentration of phosphorus in whey powder, conventional whey permeate, and low-ash whey permeate was 0.63, 0.57, and 0.10 percent, respectively, but the standardized total tract digestibility of phosphorus was not different among the three ingredients (91.2, 93.1, and 91.8 percent, respectively).

"These data clearly indicate that phosphorus from all three ingredients is well digested by weanling pigs," he said.

Stein said that these results make it possible to include whey powder, whey permeate, or low-ash whey permeate in diets for weanling pigs that are formulated on the basis of metabolizable energy and the standardized total tract digestibility of phosphorus.

"These data will provide the feed industry and swine producers with more options for including lactose in the diets," he said.

The study was published in a recent issue of the Journal of Animal Science. Co-authors are Jung Wook Lee of the U of I and Beob Kim of Konkuk University in Seoul, South Korea. Funding was provided by Arla Foods of Viby, Denmark.

Phyllis Picklesimer | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>