Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can urban gardeners benefit ecosystems while keeping food traditions alive?

06.04.2016

When conjuring up an image of a healthy ecosystem, few of us would think of a modern city. But scientists are increasingly recognizing that the majority of ecosystems are now influenced by humans, and even home gardens in urban landscapes can contribute important ecosystem services.

"Ecosystem services are the benefits that ecosystems provide to humans. In a natural ecosystem, these are things like natural medicinal products or carbon that's sequestered by forest trees. In an urban context, it would be similar types of things. For example, shade from trees provides microclimate control to keep us more comfortable," explains University of Illinois landscape agroecologist Sarah Taylor Lovell.


Urban gardens differ by ethnic group.

Credit: Sarah Taylor Lovell

Lovell and her colleagues investigated the ecosystem services and disservices provided by home food gardens in Chicago, adding a cultural dimension by looking at gardening practices in specific ethnic communities. In an earlier study, they found a high density of food gardens in Chicago were in African American, Chinese-origin, and Mexican-origin communities.

The team visited and interviewed nearly 60 households across the city, noting the types and relative abundance of the edible plants, ornamental plants, and trees in each garden.

"The number of species grown across all of the gardens was comparable to the number of species found in a remnant native prairie near Chicago," Lovell reports. "But the vast majority of garden species were not native to the region."

The number of plant species in an area can have a direct impact on insects, birds, and other wildlife, but non-native crops may not benefit wildlife in an urban context to the degree that native plants might. The researchers identified additional consequences to urban food gardens in terms of ecosystem services.

"Most of the gardeners were using synthetic fertilizers to really optimize production," Lovell explains. "In doing so, they were increasing some nutrients to a level that could lead to runoff and contamination of surrounding environments. We also identified a tradeoff between needing sunlight for your vegetable garden and preferring a treed habitat for microclimate control. Gardeners would sometimes remove trees or reduce the level of shade and shrubs."

Despite these issues, the researchers noted that urban gardens play an important role in the cultural lives of gardeners and may lead to greater food security where fresh produce is not easily available.

"Each cultural group was specifically selecting ethnic crops and propagating plants that were familiar to them," Lovell says. "I think, in some ways, especially for first generation immigrants to Chicago, it's a way to bring a feeling of home."

Several food crops, such as squash and herbs in the mint family, were common in many of the gardens, but each cultural group grew plants that were unique to that group. For example, collards and okra were only found in the gardens of African Americans. Only Mexican-origin gardeners grew Papalo and tomatillo, and only Chinese-origin gardeners grew bitter melon, yardlong bean, winter melon, fuzzy gourd, and bok choy.

Chinese-origin gardens had the most unique assemblage of plants overall, whereas there was more overlap between crops grown by African American and Mexican-origin gardeners. Chinese-origin gardeners also were more likely than other groups to utilize all available space for food crop production, often creating tiered trellis structures to maximize space for vines and other twining plants.

The work was innovative in terms of bringing a cultural dimension into the study of urban ecosystem services, but, for the researchers, the bottom line came down to people.

Lovell notes, "It was mainly about the interesting and unique connection between cultures and their foodways. The study demonstrated a special connection between what you can grow, how you grow it, and what your background is. Gardens may have the potential to connect you to a historic past or your own community. If there's a certain ethnic group in a community, gardening becomes a way to communicate with their neighbors, as a unique social network option."

###

The article, "Ecosystem services and tradeoffs in the home food gardens of African American, Chinese-origin and Mexican-origin households in Chicago, IL," appears in Renewable Agriculture and Food Systems. Lead author, John R. Taylor, is an assistant professor at Chatham University. Lovell and additional co-authors, Sam Wortman and Michelle Chan, are at U of I. The research was supported by the USDA National Institute of Food and Agriculture Hatch program.

The full text of the article is available at: http://bit.ly/1pNX8XZ.

Media Contact

Lauren Quinn
ldquinn@illinois.edu
217-300-2435

 @uignome

http://aces.illinois.edu/ 

Lauren Quinn | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>