Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AgriLife Research breeder develops drought-tolerant corn

27.08.2008
At the end of the day, drought tolerance in corn has to equate to good yields and good quality, not just good looks, said a Texas AgriLife Research scientist.

Dr. Wenwei Xu, AgriLife Research corn breeder from Lubbock, is working with crosses between temperate and tropically adapted varieties of corn to find a drought-tolerant plant that performs well under reduced irrigation.

"With the continuing decline of the Ogallala Aquifer water level and increasing cost of pumping water, the use of drought-tolerant and high-yield corn hybrids is a key for sustainable corn production under limited irrigation," Xu said.

A field day was held recently at the North Plains AgriLife Research Station near Etter to demonstrate the differences between the parent plants and the offspring, or crosses.

"We hope to reduce the amount of water required for corn by at least 10 percent," Xu said.

Already the AgriLife Research program out of Lubbock has released four inbred lines of corn and numerous others are in the process for release, he said.

"The new multiple-stress-tolerant corn lines can be used to produce corn hybrids adapted to Texas and other southern states," Xu said. "They can be a powerful tool to save water and produce crops with yield and grain quality under stressful environments."

The research station at Etter is one of three test sites in Xu's program. The others are located at Halfway and Lubbock.

About 500 hybrids are being evaluated this year for either grain yield or silage yield and quality, he said.

Xu said there has been an increasing demand for silage corn in the Texas High Plains, and producers need new hybrids adapted to the local environment. Corn produced in the U.S. is primarily based on two races of maize, but there are more than 250 races identified around the world, Xu said.

"Most of our breeding efforts start by crossing tropical corn with temperate elite lines," he said. "Then we select for desirable traits to broaden genetic diversity and introduce useful genes from exotic corn to improve stress tolerance, agronomic productivity, disease resistance, insect resistance and value-added grain characteristics."

Xu said some of the experimental hybrids they are working with have produced the same silage yield under irrigation equaling 75 percent evapotranspiration as with 100 percent evapotranspiration irrigation.

Evapotranspiration is the loss of water from the soil both by evaporation and by transpiration from the plants, and is reported on a daily basis through the Texas High Plains Evapotranspiration Network ( http://txhighplainset.tamu.edu/ ).

Bruce Spinhirne, AgriLife Research associate based in Lubbock, said they reduced the irrigation on a few hybrids by 50 percent and had a severe yield and quality limitation, so they followed that by the 75 percent water application.

Those results are due in part to the use of stored moisture in the soil profile, Spinhirne said.

"At 75 percent (evapotranspiration), you have 3 to 4 inches of available moisture that is used, where if you are watering at 100 percent, it is wasted," he said.

The average silage yield of 20 corn hybrids at two locations (Etter and Halfway) was 26.84 tons per acre under 75 percent evapotranspiration irrigation, just slightly lower than the 27.49 tons per acre under 100 percent evapotranpiration irrigation, Spinhirne said.

However, he said, there were significant differences among hybrids in each environment.

"One of our experimental hybrids produced the same amount of silage in both locations when irrigation was reduced from 100 percent to 75 percent," Spinhirne said.

"Developing and using new corn hybrids with improved tolerance to drought and other stresses is important and a viable water-saving approach," he said.

Dr. Wenwei Xu | EurekAlert!
Further information:
http://www.tamu.edu
http://lubbock.tamu.edu/corn

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>