Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single-pixel 'multiplex' captures elusive terahertz images

30.06.2014

Boston College, New Mexico and Duke researchers advance THz imaging using unique metamaterial

A novel metamaterial enables a fast, efficient and high-fidelity terahertz radiation imaging system capable of manipulating the stubborn electromagnetic waves, advancing a technology with potential applications in medical and security imaging, a team led by Boston College researchers reports in the online edition of the journal Nature Photonics.


Developed by a team of researchers from Boston College, the University of New Mexico and Duke University, a "multiplex" single pixel imaging process effectively tames stubborn terahertz (THz) light waves with electronic controls in a novel metamaterial. As the graphic shows, THz image waves are received by a metamaterial spatial light modulator, which in turn sends multiple data points from the THz scene to a single-pixel detector, which computationally reconstructs the image faster, more efficiently and with higher-fidelity than conventional THz imaging technology. Credit: Nature Photonics

The team reports it developed a "multiplex" tunable spatial light modulator (SLM) that uses a series of filter-like "masks" to retrieve multiple samples of a terahertz (THz) scene, which are reassembled by a single-pixel detector, said Boston College Professor of Physics Willie Padilla, a lead author of the report.

Data obtained from these encoded measurements are used to computationally reconstruct the images as much as six times faster than traditional raster scan THz devices, the team reports. In addition, the device employs an efficient low power source, said Padilla, whose research team worked with colleagues from the University of New Mexico and Duke University.

"I think we were surprised by how well the imaging system worked, particularly in light of the incredibly low power source," said Padilla. "Traditional THz imaging systems use sources that demand much more power than our system."

Metamaterials are designer electromagnetic materials that have tunable optical properties, allowing them to interact with light waves in new ways. Those unique properties have proven conducive to working with THz light waves, which have longer wavelengths than visible light and therefore require new imaging technology.

Padilla said the team set out to use metamaterials to develop an imaging architecture superior to earlier THz camera designs, which have relied on expensive and bulky detector arrays to assemble images.

Central to the team's advanced device is the development of a spatial light modulator constructed from a unique metamaterial structure by researchers at the University of New Mexico's Center for High Technology Materials. The SLM, which deploys a series of masks to obtain select image information from the THz scene, showed it effectively tames the otherwise stubborn THz light waves, which have defied other forms of frequency controls such as electronic sensors and semiconductor devices.

The metamaterial SLM efficiently modulates THz radiation when an electronically controlled voltage is applied between two layers of the metamaterial, effectively changing its optical properties and allowing it to actively display encoding masks designed to retrieve THz images. One such encoding technique allowed the researchers to access negative encoding values, which allow for higher fidelity image reconstruction.

A negative encoding value typically requires phase-sensitive sources and detectors, multiple detectors, or taking twice the number of measurements in order to create the image. The team created its "masks" without additional equipment or measurements, allowing researchers to use a more robust image encoding method that increased image quality while reducing the time needed to acquire the image.

Since it offers improved results without additional equipment, researchers engaged in "multiplexing" THz imaging could quickly adopt the new imaging approach. The findings add to a growing body of research that shows metamaterials are a viable option for the construction of efficient SLMs at THz wavelengths.

"In the long run, I think we set out a new paradigm for imaging at longer wavelengths," said Padilla. "Rather than including an expensive and bulky detector array in an imaging system, high-fidelity images can be obtained with only a single pixel detector and a low power source, allowing for a compact and inexpensive THz imaging system."

Padilla said a new generation of metamaterial THz imaging systems could help realize the potential applications projected by researchers and theorists.

"This type of imaging system has the potential to make a huge impact," said Padilla. "The ability to image a scene with THz could be used to screen for cancerous skin cells, monitor airports and other secure areas for illegal drugs or explosives, and perform personnel screening to look for concealed weapons."

###

In addition to Padilla, the research team included BC graduate students Claire M. Watts and David Shrenkenhamer and undergraduate Timothy Sleasman; University of New Mexico Professor Sanjay Krishna and graduate students; and Duke University Professor David R. Smith and graduate students, of the Center for Metamaterials and Integrated Plasmonics.

Ed Hayward | Eurek Alert!
Further information:
http://www.bc.edu

Further reports about: SLM THz detector detectors encoding measurements metamaterials properties spatial wavelengths waves

More articles from Materials Sciences:

nachricht Let the good tubes roll
19.01.2018 | DOE/Pacific Northwest National Laboratory

nachricht Method uses DNA, nanoparticles and lithography to make optically active structures
19.01.2018 | Northwestern University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>