Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Controlling material structure at nanoscale makes better thermal insulator

13.02.2004


Heat may be essential for life, but in some cases – such as protecting the space shuttle or improving the efficiency of a jet engine – materials with low thermal conductivities are needed to prevent passage of too much heat. As reported in the Feb. 13 issue of the journal Science, researchers have created a better thermal insulator by controlling material structure at the nanoscale.



“We explored ways to control thermal properties in materials by introducing structure on nanometer length scales,” said David Cahill, a professor of materials science and engineering and a Willett Faculty Scholar at the University of Illinois at Urbana-Champaign. “By making nanolaminates of dissimilar materials, we found that we could significantly decrease the thermal conductivity because heat cannot be carried efficiently across the material interfaces.”

Cahill, graduate student Ruxandra Costescu and colleagues at the University of Colorado at Boulder first synthesized thin-film nanolaminates composed of alternating layers of tungsten and aluminum oxide using atomic layer deposition and magnetron sputter deposition. Cahill and Costescu then measured the thermal conductivity of the nanolaminates using a technique called time-domain thermoreflectance.


“The reflectivity of a metal is a very subtle function of its temperature,” Cahill said. “By measuring how fast the reflectivity, and therefore the temperature, changes over time, we can determine the thermal conductivity.”

To measure the temperature of such small samples, the researchers use an ultra fast, mode-locked laser that produces a series of subpicosecond pulses. The laser output is split into a “pump” beam and a “probe” beam. The pump beam heats the sample and the probe beam measures the reflectivity, and hence the temperature.

“By making the individual layers only a few nanometers thick, we produced a nanolaminate material that had a thermal conductivity three times smaller than a conventional insulator,” Cahill said. “The high interface density produced a strong impediment to heat transfer.”

Heat flow from one material to another is limited at the interface, Cahill said. Heat is carried by vibrations of atoms in the lattice, and some of these lattice vibrations are scattered at the interface and don’t get transmitted across the interface.

“In our nanolaminates, vibrations in one material don’t communicate well with those in another,” Cahill said. “The heavy tungsten atoms are vibrating fairly slowly, but the light aluminum oxide atoms are vibrating quickly. The differences in elastic properties and densities of vibrational states inhibit the transfer of vibrational energy across the interface.”

The experimental results suggest that materials engineered with high interface densities may provide a route for the production of thermal insulators with ultra-low thermal conductivities.

The researchers’ findings also have some surprising implications for nanomaterials that are intended to perform as high thermal conductors in applications such as dissipating heat from electronic circuits or sensors. For example, carbon nanotubes – which have been shown to have extremely high thermal conductivities – will not perform well as fillers in composite materials designed to improve thermal transport.

“Nanotubes do not couple well thermally to the surrounding material,” Cahill said. “As a result, the heat transport across the nanotube-matrix interfaces will be very limited.”

The National Science Foundation and the U.S. Department of Energy funded the work.

James E. Kloeppel | UIUC
Further information:
http://www.news.uiuc.edu/news/04/0212nanolaminates.html

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>