Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Controlling material structure at nanoscale makes better thermal insulator

13.02.2004


Heat may be essential for life, but in some cases – such as protecting the space shuttle or improving the efficiency of a jet engine – materials with low thermal conductivities are needed to prevent passage of too much heat. As reported in the Feb. 13 issue of the journal Science, researchers have created a better thermal insulator by controlling material structure at the nanoscale.



“We explored ways to control thermal properties in materials by introducing structure on nanometer length scales,” said David Cahill, a professor of materials science and engineering and a Willett Faculty Scholar at the University of Illinois at Urbana-Champaign. “By making nanolaminates of dissimilar materials, we found that we could significantly decrease the thermal conductivity because heat cannot be carried efficiently across the material interfaces.”

Cahill, graduate student Ruxandra Costescu and colleagues at the University of Colorado at Boulder first synthesized thin-film nanolaminates composed of alternating layers of tungsten and aluminum oxide using atomic layer deposition and magnetron sputter deposition. Cahill and Costescu then measured the thermal conductivity of the nanolaminates using a technique called time-domain thermoreflectance.


“The reflectivity of a metal is a very subtle function of its temperature,” Cahill said. “By measuring how fast the reflectivity, and therefore the temperature, changes over time, we can determine the thermal conductivity.”

To measure the temperature of such small samples, the researchers use an ultra fast, mode-locked laser that produces a series of subpicosecond pulses. The laser output is split into a “pump” beam and a “probe” beam. The pump beam heats the sample and the probe beam measures the reflectivity, and hence the temperature.

“By making the individual layers only a few nanometers thick, we produced a nanolaminate material that had a thermal conductivity three times smaller than a conventional insulator,” Cahill said. “The high interface density produced a strong impediment to heat transfer.”

Heat flow from one material to another is limited at the interface, Cahill said. Heat is carried by vibrations of atoms in the lattice, and some of these lattice vibrations are scattered at the interface and don’t get transmitted across the interface.

“In our nanolaminates, vibrations in one material don’t communicate well with those in another,” Cahill said. “The heavy tungsten atoms are vibrating fairly slowly, but the light aluminum oxide atoms are vibrating quickly. The differences in elastic properties and densities of vibrational states inhibit the transfer of vibrational energy across the interface.”

The experimental results suggest that materials engineered with high interface densities may provide a route for the production of thermal insulators with ultra-low thermal conductivities.

The researchers’ findings also have some surprising implications for nanomaterials that are intended to perform as high thermal conductors in applications such as dissipating heat from electronic circuits or sensors. For example, carbon nanotubes – which have been shown to have extremely high thermal conductivities – will not perform well as fillers in composite materials designed to improve thermal transport.

“Nanotubes do not couple well thermally to the surrounding material,” Cahill said. “As a result, the heat transport across the nanotube-matrix interfaces will be very limited.”

The National Science Foundation and the U.S. Department of Energy funded the work.

James E. Kloeppel | UIUC
Further information:
http://www.news.uiuc.edu/news/04/0212nanolaminates.html

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>