Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Controlling material structure at nanoscale makes better thermal insulator

13.02.2004


Heat may be essential for life, but in some cases – such as protecting the space shuttle or improving the efficiency of a jet engine – materials with low thermal conductivities are needed to prevent passage of too much heat. As reported in the Feb. 13 issue of the journal Science, researchers have created a better thermal insulator by controlling material structure at the nanoscale.



“We explored ways to control thermal properties in materials by introducing structure on nanometer length scales,” said David Cahill, a professor of materials science and engineering and a Willett Faculty Scholar at the University of Illinois at Urbana-Champaign. “By making nanolaminates of dissimilar materials, we found that we could significantly decrease the thermal conductivity because heat cannot be carried efficiently across the material interfaces.”

Cahill, graduate student Ruxandra Costescu and colleagues at the University of Colorado at Boulder first synthesized thin-film nanolaminates composed of alternating layers of tungsten and aluminum oxide using atomic layer deposition and magnetron sputter deposition. Cahill and Costescu then measured the thermal conductivity of the nanolaminates using a technique called time-domain thermoreflectance.


“The reflectivity of a metal is a very subtle function of its temperature,” Cahill said. “By measuring how fast the reflectivity, and therefore the temperature, changes over time, we can determine the thermal conductivity.”

To measure the temperature of such small samples, the researchers use an ultra fast, mode-locked laser that produces a series of subpicosecond pulses. The laser output is split into a “pump” beam and a “probe” beam. The pump beam heats the sample and the probe beam measures the reflectivity, and hence the temperature.

“By making the individual layers only a few nanometers thick, we produced a nanolaminate material that had a thermal conductivity three times smaller than a conventional insulator,” Cahill said. “The high interface density produced a strong impediment to heat transfer.”

Heat flow from one material to another is limited at the interface, Cahill said. Heat is carried by vibrations of atoms in the lattice, and some of these lattice vibrations are scattered at the interface and don’t get transmitted across the interface.

“In our nanolaminates, vibrations in one material don’t communicate well with those in another,” Cahill said. “The heavy tungsten atoms are vibrating fairly slowly, but the light aluminum oxide atoms are vibrating quickly. The differences in elastic properties and densities of vibrational states inhibit the transfer of vibrational energy across the interface.”

The experimental results suggest that materials engineered with high interface densities may provide a route for the production of thermal insulators with ultra-low thermal conductivities.

The researchers’ findings also have some surprising implications for nanomaterials that are intended to perform as high thermal conductors in applications such as dissipating heat from electronic circuits or sensors. For example, carbon nanotubes – which have been shown to have extremely high thermal conductivities – will not perform well as fillers in composite materials designed to improve thermal transport.

“Nanotubes do not couple well thermally to the surrounding material,” Cahill said. “As a result, the heat transport across the nanotube-matrix interfaces will be very limited.”

The National Science Foundation and the U.S. Department of Energy funded the work.

James E. Kloeppel | UIUC
Further information:
http://www.news.uiuc.edu/news/04/0212nanolaminates.html

More articles from Materials Sciences:

nachricht Spin current detection in quantum materials unlocks potential for alternative electronics
16.10.2017 | DOE/Oak Ridge National Laboratory

nachricht Missing atoms in a forgotten crystal bring luminescence
11.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>