Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create first ever integrated silicon circuit with nanotube transistors

07.01.2004


The discovery of carbon nanotubes heralded a new era of scientific discovery that included the promise of ultra-sensitive bomb detectors and super-fast computer memory chips. But finding a way to incorporate nanomaterials into a working nanoelectronic system has been a frustratingly elusive achievement - until now.


Magnified view of carbon nanotube grown on silicon MOS circuitry. The bright area on the upper right-hand side is the catalyst island upon which the nanotube was grown. (Image courtesy Ali Javey)



In an important milestone in the fields of nanosciences and nanoengineering, researchers at the University of California, Berkeley and Stanford University are announcing that they have created the first working, integrated silicon circuit that successfully incorporates carbon nanotubes in its design.

"Until our work, no group has publicly reported success in directly integrating nanotubes onto silicon circuits," said Jeffrey Bokor, UC Berkeley professor of electrical engineering and computer sciences and principal investigator of the project. "It is a critical first step in building the most advanced nanoelectronic products, in which we would want to put carbon nanotubes on top of a powerful silicon integrated circuit so that they can interface with an underlying information processing system."


Researchers say the development brings them a significant step closer to using carbon nanotubes for memory chips that can hold orders of magnitude more data than current silicon chips - 10,000 times greater, according to some estimates - or for sensors sensitive enough to detect traces of explosives or biochemical agents at the molecular level.

UC Berkeley engineers teamed up with chemists at Stanford to develop an integrated circuit that can dramatically speed the analysis of thousands of synthesized carbon nanotubes. The description of this work appears in the January 2004 issue of Nano Letters, a publication of the American Chemical Society.

"These results represent a dream come true," said Hongjie Dai, associate professor of chemistry at Stanford and co-principal investigator of the project. "This achievement opens up a vast number of possible applications in nanotechnology."

A carbon nanotube, which looks like rolled chicken wire when examined at the atomic level, is tens of thousands of times thinner than a human hair, yet remarkably strong. It has attractive electrical properties, which several research groups - including the one led by Dai at Stanford - have harnessed to create high performance transistors.

The road to creating the first nano-silicon hybrid circuit began as a solution to a practical research problem: How to refine the process of growing nanotubes so that they are created with predictable qualities.

Depending on the molecular structure specific to each carbon nanotube, it can either be metallic and capable of conducting electricity, or act like semiconductors, with conductivity that can be turned on and off. But the current synthesis process results in an unpredictable proportion of metallic and semiconducting nanotubes, leaving researchers uncertain as to how much of each type they’ll get in any one batch.

Analyzing whether a batch yielded metallic or semiconducting nanotubes involved a labor-intensive processing of manually checking the electrical conductivity of each carbon nanotube.

To resolve this problem, the researchers set out to build a device that would automate the process of decoding thousands of carbon nanotubes on a silicon chip. Working with UC Berkeley’s Microfabrication Laboratory, they created a chip with silicon metal oxide semiconductor (MOS) circuitry. The chip, dubbed the random access nanotube test chip, or RANT, contains a network of silicon wires and switches that form a circuit.

Researchers then proceeded to grow carbon nanotubes directly onto "islands" on the circuit platform that contained the necessary catalyst for nanotube synthesis. The extreme heat required to grow nanotubes would typically melt the circuitry of traditional semiconductors, but the researchers got around that problem by interconnecting the silicon transistors with molybdenum, a refractory metal that can withstand very high temperatures.

"We first envisioned a patterned growth of carbon nanotubes on silicon wafers five years ago, but it wasn’t clear at that time whether that approach would work as an integrated nanotube-silicon hybrid circuit," said Dai. "It was the combined expertise in chemistry, materials science and electrical engineering that made this a reality."

The resulting chip contained thousands of carbon nanotubes connected to the circuit on a 1-square-centimeter silicon chip. By turning certain switches on and off, researchers were able to isolate the path that leads to an individual nanotube. Not only could researchers pinpoint which nanotube was responding to electrical current passing through the system, they could tell whether the conductivity could be turned on or off. If they were able to change the conductivity of the nanotube, they knew that it was a semiconductor and not metallic.

"The circuit is interconnected in such a way that only 22 control signals are needed in testing more than 2,000 nanotubes," said Yu-Chih Tseng, a UC Berkeley graduate student in electrical engineering and computer sciences and lead author of the paper. "The key is that this can all be done by a machine and computer.

We succeeded in making a tool for nanotechnology researchers, and in the process, we demonstrated the broader proof of principle that nanotubes can be successfully integrated in a complex circuit."

Research such as this is an important component of the UC Berkeley-based Center for Information Technology Research in the Interest of Society, or CITRIS. The center includes a major emphasis on nanosciences and nanoengineering, and is funding the construction of a new nanofabrication laboratory on the UC Berkeley campus that would significantly enhance researchers’ ability to conduct such fundamental and innovative work, said Ruzena Bajcsy, director of CITRIS.

Bokor cautions that the integrated circuit they have built is not a likely candidate for commercialization just yet. For one, the molybdenum they used to protect the circuit from heat damage is not a typical material used in the semiconductor industry because it is a high-resistance metal.

Nevertheless, the achievement opens the door for other promising research on nanotechnology devices, including those made of silicon nanowires and organic polymers, researchers said.

"Carbon nanotubes have fascinated many scientists and those interested in science ever since they were discovered," said Ali Javey, a graduate student in chemistry at Stanford and co-author of the paper. "This work takes us an important step forward by proving the compatibility of the nanotube synthesis process with modified silicon technology and leading the way to future nanotube-based commercial applications."

The research was conducted as part of the Materials, Structures and Devices Center, one of five multi-university focus centers funded by the Microelectronics Advanced Research Corporation (MARCO), a subsidiary of the Semiconductor Research Corporation. The project was also supported by the Defense Advanced Research Projects Agency (DARPA).

Other co-authors of the study include Peiqi Xuan and Ryan Malloy at UC Berkeley, and Qian Wang at Stanford.

Sarah Yang | UC Berkeley
Further information:
http://www.berkeley.edu/news/media/releases/2004/01/05_nano.shtml

More articles from Materials Sciences:

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

nachricht Spray-on electric rainbows: Making safer electrochromic inks
17.08.2017 | Georgia Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>