Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice engineers make first pure nanotube fibers

10.12.2003


This image shows a liquid crystalline solution of sulfuric acid and SWNTs. The solution contains roughly 5.5 percent SWNTs by volume; acid dispersions have resulted in over an order of magnitude improvement in concentration over all previously documented methods.


Discovery could allow industrial production of cables, sheets of pure carbon nanotubes

Researchers at Rice University have discovered how to create continuous fibers of out of pristine single-walled carbon nanotubes. The process, which is similar to the one used to make Kevlar® on an industrial scale, offers the first real hope of making threads, cables and sheets of pure carbon nanotubes (SWNTs).

The research is available online today from the journal Macromolecules.



Scientists estimate nanotubes are about 100 times stronger than steel at one-sixth the weight. By comparison, Kevlar® -- the fiber used in bulletproof body armor -- is about five times stronger than an equal weight of steel. So far, no large-scale objects have been made of pure nanotubes due to a lack of processing methods that are viable on an industrial scale.

Rice’s team believes they have overcome the major hurdle to industrial production of macroscale SWNT objects -- finding a way to store large amounts of nanotubes in liquid form. By dissolving nanotubes in strong sulfuric acid, a team of chemists and chemical engineers was able to achieve solutions containing up to 10 percent by weight of pure carbon
nanotubes -- more than 10 times the highest concentrations
previously achieved. This new processing route uses no polymeric
additives or detergents, which were used in previous processing
methods and are known to be an obstacle to commercial scalability and final product purity.

"As the concentration increases, the nanotubes first align themselves into spaghetti-like strands and eventually they form tightly packed liquid crystals that can be processed into pure fibers," said researcher Matteo Pasquali, assistant professor of chemical engineering.

Nanotubes are hollow cylinders of pure carbon that are just one atom thick. In addition to being very strong, nanotubes can also be either metals or semi-conductors, which means they could be used to manufacture materials that are both "smart" and ultrastrong. NASA, for example, is researching how nanotubes could be use in aircraft and spacecraft.

Chemically, carbon nanotubes are difficult to work with. They are strongly attracted to one another and tend to stick together in hairball-like clumps. Scientists have developed ways to untangle and sort nanotubes, but storing them after processing is difficult. To date, the medium of choice has been detergent and water solutions that contain less than 1 percent of dispersed nanotubes by volume and are processed by using polymer solutions. Such concentrations are too low to support industrial processes aimed at making large nanotube fibers. Moreover, scientists haven’t found a way to remove all the soap and polymer and convert the nanotubes back into their pure form.

"To produce large objects out of nanotubes, chemical processes must use a liquid that can disperse large concentrations of pristine tubes," said Pasquali. "Based on our findings, we believe superacids can be used to make macroscale fibers and sheets of nanotubes using methods that are quite similar to those in widespread use by the chemical industry."

The research paper is titled "Phase Behavior and Rheology of SWNTs in Superacids." Pasquali’s co-authors include Richard E. Smalley, University Professor, the Gene and Norman Hackerman Professor of Chemistry and professor of physics; Robert H. Hauge, distinguished faculty fellow; W. Wade Adams, director, Center for Nanoscale Science and Technology; W.E. Billups, professor of chemistry; research scientists Carter Kittrell, S. Ramesh, and Rajesh K. Saini; graduate students Virginia A. Davis, Lars M. Ericson, A. Nicholas G. Parra-Vasquez, Hua Fan, and Yuhuang Wang, and undergraduate students Valentin Prieto and Jason A. Longoria.



###
This research was funded by the Office of Naval Research, NASA, the Robert A. Welch Foundation and the Nanoscale Science and Engineering Initiative of the National Science Foundation.

The paper is available online at:
http://pubs3.acs.org/acs/journals/toc.page?incoden=mamobx&indecade=0&involume=0&inissue=0.

Jade Boyd | EurekAlert!
Further information:
http://pubs3.acs.org/acs/journals/toc.page?incoden=mamobx&indecade=0&involume=0&inissue=0
http://chico.rice.edu/

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>