Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice engineers make first pure nanotube fibers

10.12.2003


This image shows a liquid crystalline solution of sulfuric acid and SWNTs. The solution contains roughly 5.5 percent SWNTs by volume; acid dispersions have resulted in over an order of magnitude improvement in concentration over all previously documented methods.


Discovery could allow industrial production of cables, sheets of pure carbon nanotubes

Researchers at Rice University have discovered how to create continuous fibers of out of pristine single-walled carbon nanotubes. The process, which is similar to the one used to make Kevlar® on an industrial scale, offers the first real hope of making threads, cables and sheets of pure carbon nanotubes (SWNTs).

The research is available online today from the journal Macromolecules.



Scientists estimate nanotubes are about 100 times stronger than steel at one-sixth the weight. By comparison, Kevlar® -- the fiber used in bulletproof body armor -- is about five times stronger than an equal weight of steel. So far, no large-scale objects have been made of pure nanotubes due to a lack of processing methods that are viable on an industrial scale.

Rice’s team believes they have overcome the major hurdle to industrial production of macroscale SWNT objects -- finding a way to store large amounts of nanotubes in liquid form. By dissolving nanotubes in strong sulfuric acid, a team of chemists and chemical engineers was able to achieve solutions containing up to 10 percent by weight of pure carbon
nanotubes -- more than 10 times the highest concentrations
previously achieved. This new processing route uses no polymeric
additives or detergents, which were used in previous processing
methods and are known to be an obstacle to commercial scalability and final product purity.

"As the concentration increases, the nanotubes first align themselves into spaghetti-like strands and eventually they form tightly packed liquid crystals that can be processed into pure fibers," said researcher Matteo Pasquali, assistant professor of chemical engineering.

Nanotubes are hollow cylinders of pure carbon that are just one atom thick. In addition to being very strong, nanotubes can also be either metals or semi-conductors, which means they could be used to manufacture materials that are both "smart" and ultrastrong. NASA, for example, is researching how nanotubes could be use in aircraft and spacecraft.

Chemically, carbon nanotubes are difficult to work with. They are strongly attracted to one another and tend to stick together in hairball-like clumps. Scientists have developed ways to untangle and sort nanotubes, but storing them after processing is difficult. To date, the medium of choice has been detergent and water solutions that contain less than 1 percent of dispersed nanotubes by volume and are processed by using polymer solutions. Such concentrations are too low to support industrial processes aimed at making large nanotube fibers. Moreover, scientists haven’t found a way to remove all the soap and polymer and convert the nanotubes back into their pure form.

"To produce large objects out of nanotubes, chemical processes must use a liquid that can disperse large concentrations of pristine tubes," said Pasquali. "Based on our findings, we believe superacids can be used to make macroscale fibers and sheets of nanotubes using methods that are quite similar to those in widespread use by the chemical industry."

The research paper is titled "Phase Behavior and Rheology of SWNTs in Superacids." Pasquali’s co-authors include Richard E. Smalley, University Professor, the Gene and Norman Hackerman Professor of Chemistry and professor of physics; Robert H. Hauge, distinguished faculty fellow; W. Wade Adams, director, Center for Nanoscale Science and Technology; W.E. Billups, professor of chemistry; research scientists Carter Kittrell, S. Ramesh, and Rajesh K. Saini; graduate students Virginia A. Davis, Lars M. Ericson, A. Nicholas G. Parra-Vasquez, Hua Fan, and Yuhuang Wang, and undergraduate students Valentin Prieto and Jason A. Longoria.



###
This research was funded by the Office of Naval Research, NASA, the Robert A. Welch Foundation and the Nanoscale Science and Engineering Initiative of the National Science Foundation.

The paper is available online at:
http://pubs3.acs.org/acs/journals/toc.page?incoden=mamobx&indecade=0&involume=0&inissue=0.

Jade Boyd | EurekAlert!
Further information:
http://pubs3.acs.org/acs/journals/toc.page?incoden=mamobx&indecade=0&involume=0&inissue=0
http://chico.rice.edu/

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>