Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New optimized coatings for implants reduce risk of infection

19.12.2013
Researchers at Aalto University have developed a method of selection of new surface treatment processes for orthopaedic and dental implants to reduce the risk of infection.

Implants are commonly made from metals such as titanium alloys. These materials are being made porous during processing used to prepare them for medical use.


Computer tomography of porous titanium coating made on the implant surface


Model for inverse humeral (shoulder) implant

Whereas this is important to ensure good contact between the implant and the bone, this also allows dangerous bacteria to adhere and grow both on the surface as well as inside leading to increased risk of infection.

“Our work has focused on developing an analysis of surface treatments for commercial implants which reduces risk of infection,” said Professor Michael Gasik at Aalto University. “What we wanted to do is find a way to avoid the formation of any undesirable products during the processing of the implant.”

“At the same time we needed to make sure that the bio-mechanical properties of the implant would remain intact and, even more, become better.”

A thin coating of a biomaterial called Hydroxyapatite (HAP) or bioactive glass (BAG) is typically applied to orthopaedic and other implants to alter the surface properties.

Such coatings improve the body ability to recognize a foreign object in a more friendly way and promote implant integration into surrounding tissues. During the heat treatment process, excessive stresses can cause premature cracking and removal of the coating layer. This can lead to the development of unsuitable compounds and increase the risk of infection.

“Normally, implants require a certain level of porosity and elasticity to function properly,” added Professor Gasik. “The challenge for us was to ensure full functionality of the implant while maintaining sufficient density of the coating during the heat treatment process.” “We have proven that by adding a certain amount of another compound called beta-tricalcium phosphate (ß-TCP) such stresses are reduced and therefore preserves the biomaterial coating better.” Thus minimizing the risk of coating destruction and bacterial adhesion, and improving cell proliferation, allows the implant surface to achieve its function in an optimal way.

This research is significant in the battle against the spread of drug resistant bacteria. An estimated 10-15% of post-implant complications are caused by bacterial infections. Post-operative diseases are becoming more challenging and developing new treatments that are resistant to infection are crucial. In response to this research, Aalto University and partner manufacturers have already started developing new experimental devices for advanced testing of biomaterials at the conditions most close to life. Besides proving developed technology, it will allow high-throughput screening of the biomaterials with substantially better properties.

The research was conducted at Aalto University and supported by Tekes, the Finnish national innovation agency, and by the EU FP6 project “Meddelcoat”.

More information:
Professor Michael Gasik
Aalto University, School of Chemical Technology
michael.gasik@aalto.fi
Tel. +358 50 5609511
The articles:
Michael Gasik, Anu Keski-Honkola, Yevgen Bilotsky, Michael Friman: DEVELOPMENT AND OPTIMIZATION OF HYDROXYAPATITE - ß-TCP FUNCTIONALLY GRADATED BIOMATERIAL. Journal of the Mechanical Behavior of Biomedical Materials (2013), dx.doi.org/10.1016/j.jmbbm.2013.11.017

Michael Gasik, Lieve Van Mellaert, Dorothée Pierron, Annabel Braem, Dorien Hofmans, Evelien De Waelheyns, Jozef Anné, Marie-Françoise Harmand, Jozef Vleugels. REDUCTION OF BIOFILM INFECTION RISKS AND PROMOTION OF OSTEOINTEGRATION FOR OPTIMIZED SURFACES OF TITANIUM IMPLANTS. Advanced Healthcare Materials, 1, No. 1 (2012), 117–127.

Aalto University, Finland is a new multidisciplinary science and art community in the fields of science, economics, and art and design. The University is founded on Finnish strengths, and its goal is to develop as a unique entity to become one of the world's top universities. Aalto University's cornerstones are its strengths in education and research. At the new University, there are 20,000 basic degree and graduate students as well as a staff of 5,000 of which 370 are professors.

Jenni Jeskanen
Communications
Aalto University
+358 50 372 7062

Jenni Jeskanen | Aalto University
Further information:
http://www.aalto.fi

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>