Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Materials chemistry: As good as gold

17.02.2012
Reduced graphene oxide decorated with metallic nanoparticles shows high potential for gas detection

Graphene — carbon atoms packed in a honeycomb lattice — exhibits exceptional physical and electronic properties not found in conventional materials. Decorating the surface of graphene with nanoparticles may further enhance the performance of the material, but the fabrication technique is not without its challenges.


The attachment of hydrogen sulfide gas molecules to the graphene surface results in a drop in current. Copyright : A*STAR

Verawati Tjoa and co-workers at the A*STAR Singapore Institute of Manufacturing Technology and Nanyang Technological University1 have now demonstrated an easy way to decorate the surface of graphene with gold nanoparticles. The resulting material is more sensitive and versatile than undecorated graphene for gas detection.

Although high-purity graphene is obtainable through mechanical exfoliation of high-quality graphite, this method is not suitable for large-scale applications. Tjoa and her team focused their attention on reduced graphene oxide (rGO), which is much more accessible and practical for applications, and studied how attaching gold nanoparticles can affect the physical properties of the material. They obtained gold-decorated reduced graphene oxide (Au-rGO) sheets by immersing graphene oxide sheets in chloroauric acid before chemical reduction.

The formation of metal nanoparticles has actually been reported before, but as Tjoa explains “[this work] is the first of its kind to study the electronic properties of these systems”. The electrical characterization immediately shows that the Au-rGO is positively doped and has lower conductivity than rGO. The lower conductivity is likely due to the scattering of charges on the metal nanoparticles. The positive doping can be ascribed to the transfer of electrons from the graphene oxide to the metal salt during formation of the gold nanoparticles, as was confirmed through Raman spectroscopy experiments.

The researchers found interesting results when they exposed the Au-rGO layers to various gases. In the case of hydrogen sulphide, a gas that acts as an electron donor, the conductivity of Au-rGO layers showed a sharp reduction, indicating the injection of electrons to the sheet, which in turn leads to a lower number of conducting holes. This current modulation under exposure to hydrogen sulphide is significant since unmodified graphene is sensitive to oxidizing gases such as nitrogen dioxide, but not to toxic gases such as hydrogen sulphide. The sensitivity is also higher when gold nanoparticles are present, as they allow the injection of extra holes in the rGO plane, resulting in higher conductivity. The researchers also conducted additional experiments with silver-decorated rGO, yielding qualitatively similar results.

The sensitivity of the nanoparticle-decorated material can be tuned by changing the number of attached nanoparticles. “This work is the first demonstration of how the introduction of metal nanoparticles could lead to novel sensing capabilities in graphene,” says Tjoa.

The A*STAR-affiliated researchers contributing to this research are from the Singapore Institute of Manufacturing Technology

Lee Swee Heng | Research asia research news
Further information:
http://www.research.a-star.edu.sg/
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>