Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Graphene organic photovoltaics, or, will joggers' t-shirts someday power their cell phones?

A flexible, printable material 4-or-fewer-atoms-thick may be a high road to economical and convenient electrical power from the sun

A University of Southern California team has produced flexible transparent carbon atom films that the researchers say have great potential for a new breed of solar cells.

"Organic photovoltaic (OPV) cells have been proposed as a means to achieve low cost energy due to their ease of manufacture, light weight, and compatibility with flexible substrates," wrote Chongwu Zhou, a professor of electrical engineering in the USC Viterbi School of Engineering, in a paper recently published in the journal ACS Nano.

The technique described in the article describes progress toward a novel OPV cell design that has significant advantages, particularly in the area of physical flexibility.

A critical aspect of any OPV photo-electronic device is a transparent conductive electrode through which light can couple with active materials to create electricity. The new work indicates that graphene, a highly conductive and highly transparent form of carbon made up of atoms-thick sheets of carbon atoms, has high potential to fill this role.

While graphene's existence has been known for decades, it has only been studied extensively since 2004 because of the difficulty of manufacturing it in high quality and in quantity.

The Zhou lab reported the large scale production of graphene films by chemical vapor deposition three years ago. In this process, the USC engineering team creates ultra thin graphene sheets by first depositing carbon atoms in the form of graphene films on a nickel plate from methane gas.

Then they lay down a protective layer of thermo plastic over the graphene layer, and then dissolve the nickel underneath in an acid bath. In the final step they attach the plastic-protected graphene to a very flexible polymer sheet, which can then be incorporated into a OPV cell. (see diagram)

The USC team has produced graphene/polymer sheets ranging in sizes up to 150 square centimeters that in turn can be used to create dense arrays of flexible OPV cells.

These OPV devices convert solar radiation to electricity, but not as efficiently as silicon cells. The power provided by sunlight on a sunny day is about 1000 watts per meter square. "For every 1000 watts of sunlight that hits a one square meter area of the standard silicon solar cell, 14 watts of electricity will be generated," says Lewis Gomez De Arco, a doctoral student and a member of the team that built the graphene OPVs. "Organic solar cells are less efficient; their conversion rate for that same one thousand watts of sunlight in the graphene-based solar cell would be only 1.3 watts."

But what graphene OPVs lack in efficiency, they can potentially more than make for in lower price and, greater physical flexibility. Gomez De Arco thinks that it may eventually be possible to run printing presses laying extensive areas covered with inexpensive solar cells, much like newspaper presses print newspapers.

"They could be hung as curtains in homes or even made into fabric and be worn as power generating clothing. I can imagine people powering their cellular phone or music/video device while jogging in the sun," he said.

The USC researchers say graphene OPVs would be major advance in at least one crucial area over a rival OPV design, one based on Indium–Tin–Oxide (ITO). In the USC team's tests, ITO cells failed at a very small angle of bending, while the graphene-based cells remained operational after repeated bending at much larger stress angles. This would give the graphene solar cells a decided advantage in some uses, including the printed-on-fabric applications proposed by the USC team.

Zhou and the other researchers on the USC team – which included Yi Zhang, Cody W. Schlenker, Koungmin Ryu, and Mark E. Thompson in addition to Gomez de Arco — are excited by the potential for this technology.

Their paper concludes that their approach constitutes a significant advance toward the production of transparent conductive electrodes in solar cells. "CVD graphene meets the most important criteria of abundance, low cost, conductivity, stability, electrode/organic film compatibility, and flexibility that are necessary to replace ITO in organic photovoltaics, which may have important implications for future organic optoelectronic devices."

Eric Mankin | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>