Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Graphene Discovery Boosts Oil Exploration Efforts, Could Enable Self-Powered Microsensors

Nanoengineered Graphene Coating Harvests Energy From Flowing Water, Powers Microsensors Used To Detect Underground Oil and Gas

Researchers at Rensselaer Polytechnic Institute have developed a new method to harvest energy from flowing water. This discovery aims to hasten the creation of self-powered microsensors for more accurate and cost-efficient oil exploration.

Led by Rensselaer Professor Nikhil Koratkar, the researchers investigated how the flow of water over surfaces coated with the nanomaterial graphene could generate small amounts of electricity. The research team demonstrated the creation of 85 nanowatts of power from a sheet of graphene measuring .03 millimeters by .015 millimeters.

This amount of energy should be sufficient to power tiny sensors that are introduced into water or other fluids and pumped down into a potential oil well, Koratkar said. As the injected water moves through naturally occurring cracks and crevices deep in the earth, the devices detect the presence of hydrocarbons and can help uncover hidden pockets of oil and natural gas. As long as water is flowing over the graphene-coated devices, they should be able to provide a reliable source of power. This power is necessary for the sensors to relay collected data and information back to the surface.

“It’s impossible to power these microsensors with conventional batteries, as the sensors are just too small. So we created a graphene coating that allows us to capture energy from the movement of water over the sensors,” said Koratkar, professor in the Department of Mechanical, Aerospace, and Nuclear Engineering and the Department of Materials Science and Engineering in the Rensselaer School of Engineering. “While a similar effect has been observed for carbon nanotubes, this is the first such study with graphene. The energy-harvesting capability of graphene was at least an order of magnitude superior to nanotubes. Moreover, the advantage of the flexible graphene sheets is that they can be wrapped around almost any geometry or shape.”

Details of the study, titled “Harvesting Energy from Water Flow over Graphene,” were published online last week by the journal Nano Letters. The study also will appear in a future print edition of the journal. The online version may be viewed at:

It is the first research paper to result from the $1 million grant awarded to Koratkar’s group in March 2010 by the Advanced Energy Consortium.

Hydrocarbon exploration is an expensive process that involves drilling deep down in the earth to detect the presence of oil or natural gas. Koratkar said oil and gas companies would like to augment this process by sending out large numbers of microscale or nanoscale sensors into new and existing drill wells. These sensors would travel laterally through the earth, carried by pressurized water pumped into these wells, and into the network of cracks that exist underneath the earth’s surface. Oil companies would no longer be limited to vertical exploration, and the data collected from the sensors would arm these firms with more information for deciding the best locations to drill.

The team’s discovery is a potential solution for a key challenge to realizing these autonomous microsensors, which will need to be self-powered. By covering the microsensors with a graphene coating, the sensors can harvest energy as water flows over the coating.

“We’ll wrap the graphene coating around the sensor, and it will act as a ‘smart skin’ that serves as a nanofluidic power generator,” Koratkar said.

Graphene is a single-atom-thick sheet of carbon atoms, which are arranged like a chain-link fence. For this study, Koratkar’s team used graphene that was grown by chemical vapor deposition on a copper substrate and transferred onto silicon dioxide. The researchers created an experimental water tunnel apparatus to test the generation of power as water flows over the graphene at different velocities.

Along with physically demonstrating the ability to generate 85 nanowatts of power from a small fragment of graphene, the researchers used molecular dynamics simulations to better understand the physics of this phenomenon. They discovered that chloride ions present in the water stick to the surface of graphene. As water flows over the graphene, the friction force between the water flow and the layer of adsorbed chloride ions causes the ions to drift along the flow direction. The motion of these ions drags the free charges present in graphene along the flow direction – creating an internal current.

This means the graphene coating requires ions to be present in water to function properly. Therefore, oil exploration companies would need to add chemicals to the water that is injected into the well. Koratkar said this is an easy, inexpensive solution.

For the study, Koratkar’s team also tested the energy harvested from water flowing over a film of carbon nanotubes. However, the energy generation and performance was far inferior to those attained using graphene, he said.

Looking at potential future applications of this new technology, Koratkar said he could envision self-powered microrobots or microsubmarines. Another possibility is harvesting power from a graphene coating on the underside of a boat.

Along with Koratkar, co-authors on the paper include: Yunfeng Shi, assistant professor in the Department of Materials Science and Engineering at Rensselaer; Rensselaer mechanical engineering graduate students Prashant Dhiman and Fazel Yavari; Rensselaer physics graduate student Xi Mi; along with Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice University; and Rice graduate student Hemtej Gullapalli.

For more information on Koratkar’s research at Rensselaer, visit:

• Researchers Secure $1 Million Grant To Develop Oil Exploration Game-Changer
• “Nanoscoops” Could Spark New Generation of Electric Automobile Batteries
• Water Could Hold Answer to Graphene Nanoelectronics
• Graphene Outperforms Carbon Nanotubes for Creating Stronger Materials
• Using Nanotubes To Detect and Repair Cracks in Aircraft Wings, Other Structures

Michael Mullaney
Rensselaer Polytechnic Institute
Troy, NY
Visit the Rensselaer research and discovery blog:
Follow us on Twitter:

Michael Mullaney | Newswise Science News
Further information:

More articles from Materials Sciences:

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>