Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gold: Rewriting text book knowledge

13.01.2016

Gold as an element is known and highly valued for more than 2500 years, and its popularity is based on its beautiful color and chemical inertness. It is well established that the golden color is, physically spoken, of relativistic origin. The surface of gold is unique, as it hosts states that have been understood as a prototype of surface states, named after William Shockley, Shockley surface states. However, until nowadays it was overseen that the gold surface states are very special, when relativity is taken into account.

These Shockley surface states can be reinterpreted as topologically derived surface states comparable with the robust surface state of a topological insulator, a recently discovered new quantum state. This new quantum state has caused a lot of excitement in the condensed matter community ranging from physics, materials science to chemistry.


Gold was found to exhibit topological surface states.

B.Yan/MPI CPfS

However, no application of topological materials has been realized up to now. Gold and platinum, metals with the topological Shockley surface states, are used as standards in surface science and are also established materials for catalysis. Gold surfaces states are commonly employed to benchmark the capability of photoemission spectroscopy and scanning tunneling spectroscopy.

In a recent study on gold surface states, solid state chemistry research at the Max Planck Institute Chemical Physics of Solids in Dresden, with Binghai Yan co-affiliated at ShanghaiTech University, was combined with surface physics research of the University Kaiserslautern (department of Physics and State Research center OPTIMAS).

To prove a new theoretical prediction by Binghai Yan and the Dresden team, the Kaiserslautern team has used a unique photoemission technique, momentum-resolved two-photon photoemission, which allows us to measure the electronic structure in momentum space both below and above the Fermi energy. By combining an optical parametric oscillator laser system with a modern momentum microscope, it was feasible to map the dispersion of the surface states and to confirm experimentally their topological nature.

The discovery not only opens a pathway to new quantum materials, it will also initiate a discussion about the role of topological surfaces states in surface-related processes, such as adsorption and catalysis. Binghai Yan comments “I am fully convinced that the robust surface state in topological materials should positively influence catalysis. We will use this concept to search for new and sustainable materials than noble metals! ”

The work was published in Nature Communication online on Dec. 14th:
Topological States on the Gold Surface,
Binghai Yan, Benjamin Stadtmüller, Norman Haag, Sebastian Jakobs, Johannes Seidel, Dominik Jungkenn, Stefan Mathias, Mirko Cinchetti, Martin Aeschlimann and Claudia Felser, Nature Communication 6 (2015) 10167 | DOI: 10.1038/ncomms10167 and preprint arXiv:1504.01971

Weitere Informationen:

http://www.cpfs.mpg.de Prof. Dr. C. Felser, Dr. B. Yan
https://optimas.uni-kl.de Prof. Dr. M. Aeschlimann, Dr. I. Sattler
http://www.nature.com/ncomms/2015/151214/ncomms10167/full/ncomms10167.html

Ingrid Rothe | Max-Planck-Institut für Chemische Physik fester Stoffe

More articles from Materials Sciences:

nachricht Meter-sized single-crystal graphene growth becomes possible
22.08.2017 | Science China Press

nachricht Nagoya physicists resolve long-standing mystery of structure-less transition
21.08.2017 | Nagoya University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>