Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gold: Rewriting text book knowledge

13.01.2016

Gold as an element is known and highly valued for more than 2500 years, and its popularity is based on its beautiful color and chemical inertness. It is well established that the golden color is, physically spoken, of relativistic origin. The surface of gold is unique, as it hosts states that have been understood as a prototype of surface states, named after William Shockley, Shockley surface states. However, until nowadays it was overseen that the gold surface states are very special, when relativity is taken into account.

These Shockley surface states can be reinterpreted as topologically derived surface states comparable with the robust surface state of a topological insulator, a recently discovered new quantum state. This new quantum state has caused a lot of excitement in the condensed matter community ranging from physics, materials science to chemistry.


Gold was found to exhibit topological surface states.

B.Yan/MPI CPfS

However, no application of topological materials has been realized up to now. Gold and platinum, metals with the topological Shockley surface states, are used as standards in surface science and are also established materials for catalysis. Gold surfaces states are commonly employed to benchmark the capability of photoemission spectroscopy and scanning tunneling spectroscopy.

In a recent study on gold surface states, solid state chemistry research at the Max Planck Institute Chemical Physics of Solids in Dresden, with Binghai Yan co-affiliated at ShanghaiTech University, was combined with surface physics research of the University Kaiserslautern (department of Physics and State Research center OPTIMAS).

To prove a new theoretical prediction by Binghai Yan and the Dresden team, the Kaiserslautern team has used a unique photoemission technique, momentum-resolved two-photon photoemission, which allows us to measure the electronic structure in momentum space both below and above the Fermi energy. By combining an optical parametric oscillator laser system with a modern momentum microscope, it was feasible to map the dispersion of the surface states and to confirm experimentally their topological nature.

The discovery not only opens a pathway to new quantum materials, it will also initiate a discussion about the role of topological surfaces states in surface-related processes, such as adsorption and catalysis. Binghai Yan comments “I am fully convinced that the robust surface state in topological materials should positively influence catalysis. We will use this concept to search for new and sustainable materials than noble metals! ”

The work was published in Nature Communication online on Dec. 14th:
Topological States on the Gold Surface,
Binghai Yan, Benjamin Stadtmüller, Norman Haag, Sebastian Jakobs, Johannes Seidel, Dominik Jungkenn, Stefan Mathias, Mirko Cinchetti, Martin Aeschlimann and Claudia Felser, Nature Communication 6 (2015) 10167 | DOI: 10.1038/ncomms10167 and preprint arXiv:1504.01971

Weitere Informationen:

http://www.cpfs.mpg.de Prof. Dr. C. Felser, Dr. B. Yan
https://optimas.uni-kl.de Prof. Dr. M. Aeschlimann, Dr. I. Sattler
http://www.nature.com/ncomms/2015/151214/ncomms10167/full/ncomms10167.html

Ingrid Rothe | Max-Planck-Institut für Chemische Physik fester Stoffe

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>