Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gold: Rewriting text book knowledge

13.01.2016

Gold as an element is known and highly valued for more than 2500 years, and its popularity is based on its beautiful color and chemical inertness. It is well established that the golden color is, physically spoken, of relativistic origin. The surface of gold is unique, as it hosts states that have been understood as a prototype of surface states, named after William Shockley, Shockley surface states. However, until nowadays it was overseen that the gold surface states are very special, when relativity is taken into account.

These Shockley surface states can be reinterpreted as topologically derived surface states comparable with the robust surface state of a topological insulator, a recently discovered new quantum state. This new quantum state has caused a lot of excitement in the condensed matter community ranging from physics, materials science to chemistry.


Gold was found to exhibit topological surface states.

B.Yan/MPI CPfS

However, no application of topological materials has been realized up to now. Gold and platinum, metals with the topological Shockley surface states, are used as standards in surface science and are also established materials for catalysis. Gold surfaces states are commonly employed to benchmark the capability of photoemission spectroscopy and scanning tunneling spectroscopy.

In a recent study on gold surface states, solid state chemistry research at the Max Planck Institute Chemical Physics of Solids in Dresden, with Binghai Yan co-affiliated at ShanghaiTech University, was combined with surface physics research of the University Kaiserslautern (department of Physics and State Research center OPTIMAS).

To prove a new theoretical prediction by Binghai Yan and the Dresden team, the Kaiserslautern team has used a unique photoemission technique, momentum-resolved two-photon photoemission, which allows us to measure the electronic structure in momentum space both below and above the Fermi energy. By combining an optical parametric oscillator laser system with a modern momentum microscope, it was feasible to map the dispersion of the surface states and to confirm experimentally their topological nature.

The discovery not only opens a pathway to new quantum materials, it will also initiate a discussion about the role of topological surfaces states in surface-related processes, such as adsorption and catalysis. Binghai Yan comments “I am fully convinced that the robust surface state in topological materials should positively influence catalysis. We will use this concept to search for new and sustainable materials than noble metals! ”

The work was published in Nature Communication online on Dec. 14th:
Topological States on the Gold Surface,
Binghai Yan, Benjamin Stadtmüller, Norman Haag, Sebastian Jakobs, Johannes Seidel, Dominik Jungkenn, Stefan Mathias, Mirko Cinchetti, Martin Aeschlimann and Claudia Felser, Nature Communication 6 (2015) 10167 | DOI: 10.1038/ncomms10167 and preprint arXiv:1504.01971

Weitere Informationen:

http://www.cpfs.mpg.de Prof. Dr. C. Felser, Dr. B. Yan
https://optimas.uni-kl.de Prof. Dr. M. Aeschlimann, Dr. I. Sattler
http://www.nature.com/ncomms/2015/151214/ncomms10167/full/ncomms10167.html

Ingrid Rothe | Max-Planck-Institut für Chemische Physik fester Stoffe

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>