Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geosciences Professor Establishes Structure Of A New Superhard Form Of Carbon

28.06.2012
An international team led by Artem R. Oganov, PhD, a professor of theoretical crystallography in the Department of Geosciences at Stony Brook University, has established the structure of a new form of carbon. The results of their work, “Understanding the Nature of Superhard Graphite,” were published June 26 in Scientific Reports, a new journal of the Nature Publishing Group.

Dr. Oganov and his team used a novel computational method to demonstrate that the properties of what had previously been thought to be only a hypothetical structure of a superhard form of carbon called “M-carbon” – constructed by Oganov in 2006 – matched perfectly the experimental data on “superhard graphite.”

“Most of the known forms of carbon have a colorful story of their discovery and a multitude of real or potential revolutionary applications,” said Oganov. “Think of diamond, a record-breaking material in more than one way. Think of graphene, destined to become the material of electronics of the future. Or of fullerenes, the discovery of which has started the field of nanoscience.”

The story of yet another form of carbon started in 1963, when Aust and Drickamer compressed graphite at room temperature. High-temperature compression of graphite is known to produce diamond, but at room temperature an unknown form of carbon was produced. This new form, like diamond, was transparent and superhard - but its other properties were inconsistent with diamond or other known forms of carbon.

“The experiment itself is simple and striking: you compress black ultrasoft graphite, and then it suddenly turns into a colorless, transparent, superhard and mysterious new form of carbon – ‘superhard graphite,’” said Oganov. “The experiment was repeated several times since, and the result was the same, but no convincing structural model was produced, due to the low resolution of experimental data.”

Using his breakthrough crystal structure prediction methodology, Oganov in 2006 constructed a new low-energy superhard structure of “M-carbon.” That work resulted in a stream of scientific papers that within two years proposed different “alphabetic” structures, such as F-, O-, P-, R-, S-, T-, W-, X-, Y-, Z-carbons. “The irony was that most of these also had properties compatible with experimental observations on ‘superhard graphite.’ To discriminate between these models, higher-resolution experimental data and additional theoretical insight are required,” he said.

According to Oganov, the reason why diamond is not formed on cold compression of graphite is that the reconstruction needed to transform graphite into diamond is too large and is associated with too great an energy barrier, which can be overcome only at high temperatures, when atoms can jump far. At low temperatures, graphite chooses instead a transformation associated with the lowest activation barrier.

One could establish the structure of ‘superhard graphite’ by finding which structure has the lowest barrier of formation from graphite. To do that, Oganov, his postdoctoral associate Salah Eddine Boulfelfel, and their German colleague, Professor Stefano Leoni, of Dresden University of Technology, used a powerful simulation approach, recently adapted to solid materials, known as transition path sampling. These simulations required some of the world's most powerful supercomputers, and finally proved that "superhard graphite" is indeed identical to M-carbon, earlier predicted by Oganov.

“These calculations are technically extremely challenging, and it took us many months to perform and analyze them. Searching for the truth, you have to be prepared for any outcome, and we were ready to accept if another of the many proposed structures won the contest. But we got lucky, and our own proposal – M-carbon – won,” said Oganov.

Another result of this study is a set of detailed mechanisms of formation of several potential carbon allotropes. These could be used to engineer ways of their synthesis for potential technological applications.

“We don't know yet which applications M-carbon will find, but most forms of carbon did manage to find revolutionary applications, and this amazing material might do so as well,” said Oganov.

Please click here (http://www.youtube.com/watch?v=bm0ZmXpHCk0) for a short video by Salah Eddine Boulfelfel on the “New Carbon Allotrope at High Pressure” from the Artem Oganov Lecture Series.

| Newswise Science News
Further information:
http://www.stonybrook.edu

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>