Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-aging elixir for solar cells

03.07.2012
Photovoltaic modules deliver power without risks to the environment and climate. But solar-power is expensive. Therefore, it is imperative that the modules last as long as possible, 25 years or more. Fraunhofer researchers in the USA are now investigating materials to protect solar cells from environmental influences to meet that goal.

Sometimes it‘s just a couple of cents that decide the success or failure of a technology. As long as solar power, for instance, is still more expensive than energy extracted from fossil fuels, photovoltaics will not be competitive on the broad open market.


In this mechanical test stand the researcher examines the quality of silicone-encased solar modules. (© Fraunhofer CSE)

“Power generation from solar energy continues to be reliant on public subsidies – this is no different in the USA than in Germany,” explains Christian Hoepfner, Scientific Director of the Fraunhofer Center for Sustainable Energy Systems CSE in Cambridge, Massachusetts, USA. “If we want renewable energy to penetrate the global market over the long term, then we must ensure it gets cheaper.”

There are no silver bullets to reach this target: Efficiency cannot be arbitrarily increased, and it is expensive to produce solar cells and modules. If you want to change something here, you have to solve a puzzle with many variables: Engineering teams around the world are searching for new technologies and production methods to make cells and modules cheaper, more efficient, more durable and reliable.

Silicone – steady and resilient
Silicone is one of the promising materials. It is a highly unusual substance – neither inorganic crystal nor organic polymer – but related to both. While PV modules have been encapsulated with silicones, until now, however, they were not widely used for laminating solar modules. Lamination is a protective coating that surrounds the fragile silicon wafer. Today most manufacturers of photovoltaic cells use ethylene-vinyl acetate, or EVA for short.

In order to determine if silicone could replace the ethylene-vinyl acetate a team of experts worked together: researchers from Fraunhofer and from Dow Corning Corporation, the world‘s largest manufacturer of silicones used in medical technology, cosmetics, the automotive industry, paper processing and electronics. The scientists coated photovoltaic cells with liquid silicone. “When the silicone hardens, it encases the cells; the electronic components thus have optimal protection,” says project Manager Rafal Mickiewicz. The experts at CSE constructed prototypes from the silicone-laminated cells, and tested these photovoltaic modules in a climate chamber at low temperatures and under cyclic loads. Afterwards the module performance was tested with a light flasher. In addition the researchers used electro-luminescence-imaging for the detection of micro cracks. A comparison of the results with those of conventional solar modules proved that silicone-encased photovoltaic modules are more resistant to cyclic loading of the type modules experience in strong winds, in particular at a frosty minus 40 degrees Celsius.

“Dow Corning Corporation collaborated with researchers at the Fraunhofer CSE Photovoltaic Modules Group for two years. This collaboration significantly improved our understanding of the materials requirements of our solar modules, particularly in regard to sustainability and output,” concludes Andy Goodwin, Global Science & Technology Manager, Dow Corning Solar Solutions.

In the meantime, the tests have been published at the 26th European Photovoltaics Solar Energy Conference in 2011. “The study results demonstrate that silicone lamination is well-suited for certain applications, because the silicone protects the fragile components on the inside well, and moreover, withstands severe temperature fluctuations. With this technology we can, for instance, make modules with thin Si cells more robust,” concludes Mickiewicz.

Dr. Christian Hoepfner | Fraunhofer-Institute
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/july/anti-aging-elixir-for-solar-cells.html

More articles from Materials Sciences:

nachricht Simple processing technique could cut cost of organic PV and wearable electronics
06.12.2016 | Georgia Institute of Technology

nachricht InLight study: insights into chemical processes using light
05.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>