Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeted drug leads to regression of metastatic melanoma with mutated BRAF gene

26.08.2010
Use of an experimental targeted drug to treat metastatic melanoma tumors with a specific genetic signature was successful in more than 80 percent of patients in a phase 1 clinical trial. Results of the trial of PLX4032, an inhibitor of a protein called BRAF that is overactive in more than half of all melanomas, appear in the August 26 New England Journal of Medicine.

"Metastatic melanoma has a devastating prognosis and is one of the top causes of cancer death in young patients," says Keith Flaherty, MD, director of Developmental Therapeutics at the Massachusetts General Hospital (MGH) Cancer Center, lead and corresponding author of the NEJM article. "Until now, available therapies were few and unreliable, so these findings can really change the outlook for patients whose tumors are fueled by this mutation."

Although surgical removal is usually successful in treating early-stage melanoma, once the skin tumor has spread to other sites in the body, the outlook has been grim. The two FDA-approved drugs – interleukin-2 and dacarbazine – produce a response in only 10 to 20 percent of patients. The current prognosis for survival in metastatic melanoma is 9 months or less, with 9,000 people dying in the U.S. each year.

The role in melanoma of the BRAF mutation – which keeps the protein constantly activated and driving cell growth – was discovered in 2002 by researchers at the Sanger Institute in Britain. Flaherty – who was then at the University of Pennsylvania Abramson Cancer Center – began to explore whether drugs targeting the mutation might interfere with tumor growth. After one potential drug was not effective, he began working in collaboration with Paul Chapman, MD, of Memorial Sloan-Kettering Cancer Center in New York to study PLX4032, an agent developed by Plexxikon and licensed to Roche Pharmaceuticals. Initial trial results were disappointing, but a new formulation that increased the bioavailability of PLX4032 proved to have rapid results that are being reported in the NEJM paper.

The initial stage of the study – led by Flaherty, Chapman and colleagues at six sites in the U.S. and Australia – was designed to establish the effective dose. It enrolled 55 cancer patients, most with metastatic melanoma, who received escalating doses of PLX4032 until unacceptable side effects occurred. BRAF mutations were present in the melanomas of 16 participants in the latter part of this stage, and in 11 of those patients, tumors quickly shrank or, in one instance, disappeared. Three participants with BRAF-mutated thyroid cancers also had their tumors shrink or stabilize in response to PLX4032 treatment.

The second stage enrolled 32 patients with BRAF-mutated melanoma who received the PLX4032 dosage established in the first phase: 960 mg twice a day. In 26 of those participants, tumors shrank more than 30 percent, meeting the criteria for clinical response, and completely disappeared in two. Since another two participants had some reduction in the size of their tumors, Flaherty projects that PLX4032 appears to shrink tumors in approximately 90 percent of patients with BRAF-mutated melanomas.

"One of the things that make these results truly remarkable is that this drug works so reliably," he explains. "And patients who have been experiencing symptoms like pain and fatigue begin to feel better within a week of starting treatment, giving them a much better quality of life.

As seen in trials of other targeted cancer treatments, resistance to PLX4032 developed in the tumors of many participants, leading to resumed tumor growth. Currently tumor suppression has been maintained from about three months to longer than two years, with an average progression-free survival of eight months, and follow-up studies are exploring how resistance occurs and potential strategies to get around it. Two additional MGH-based clinical trials are now underway – a phase 2 study in patients unsuccessfully treated with the FDA-approved drugs, enrollment for which is complete, and a larger phase 3 study that compares PLX4032 with dacarbazine in newly diagnosed patients.

"Until now, we've never had a credible first treatment option for metastatic melanoma, so this has completely transformed how we approach treatment for patients with the BRAF mutation," says Flaherty, who is a member of the Harvard Medical School faculty. "Although we don't know how long response may last, the ability to beat this disease down in the short term will buy us time to strategize second-line therapies and design the next generation of trials."

Along with senior author Paul Chapman, MD, Memorial Sloan-Kettering Cancer Center, co-authors of the NEJM article are Igor Puzanov, MD, and Jeffrey Sosman, PhD, Vanderbilt University; Kevin Kim, MD, M.D. Anderson Cancer Center; Antoni Ribas, MD, University of California at Los Angeles; Grant McArthur, MB, BS, PhD, Peter MacCallum Cancer Centre, East Melbourne, Australia; Peter O'Dwyer, MD, University of Pennsylvania Abramson Cancer Center; Richard Lee, MD, PhD, and Joseph Grippo, Roche Pharmaceuticals, and Keith Nolop, MD, Plexxikon. The study was funded by Plexxikon and Roche.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $600 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, systems biology, transplantation biology and photomedicine.

Katie Marquedant | EurekAlert!
Further information:
http://www.mgh.harvard.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts

08.12.2016 | Power and Electrical Engineering

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>