Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Putting a brake on tumor spread

24.01.2014
A team of scientists, led by principal investigator David D. Schlaepfer, PhD, a professor in the Department of Reproductive Medicine at the University of California, San Diego School of Medicine, has found that a protein involved in promoting tumor growth and survival is also activated in surrounding blood vessels, enabling cancer cells to spread into the bloodstream.

The findings are published in this week's online issue of the Journal of Cell Biology.


Normal breast tissue and invasive ductal carcinoma stained brown with antibodies to activated FAK. Blood vessels are indicated by BV.

Credit: David Schlaepfer, UC San Diego.

Blood vessels are tightly lined with endothelial cells, which form a permeability barrier to circulating cells and molecules. "Our studies show that pharmacological or genetic inhibition of the endothelial protein focal adhesion kinase, or FAK, prevents tumor spread by enhancing the vessel barrier function."

The researchers found that selective FAK inhibition within endothelial cells prevented spontaneous tumor metastasis without alterations in tumor size. Schlaepfer, with colleagues at the UC San Diego Moores Cancer Center, is exploring whether inhibiting targets like FAK, which has important regulatory functions in both tumor cells and blood vessels, might provide a dual mechanism for preventing both cancer growth and spread.

Using mouse models of breast, ovarian and melanoma tumors, first author Christine Jean, PhD, showed that FAK activity was elevated in the blood vessels surrounding tumors, compared to normal tissue. FAK modifies the function of other cellular proteins, and researchers identified a previously unknown FAK target: a protein called vascular endothelial cadherin (VE-cadherin) that helps endothelial cells fasten tightly together. When modified by FAK, VE-cadherin complexes fall apart and blood vessels become leaky. Inactivating FAK within endothelial cells prevented this unwanted permeability and helped block the ability of tumor cells to pass through endothelial cell barriers.

Schlaepfer said the research has major clinical implications: Metastasis – or the spread of a cancer from its originating site to other parts of the body – is responsible for 90 percent of cancer-related deaths. "This fact alone underscores the need for a better mechanistic understanding of the metastatic process," Schlaepfer said. He noted that several FAK-inhibitors are currently being tested in clinical trials.

Co-authors include Xiao Lei Chen, Isabelle Tancioni, Sean Uryu, Christine Lawson, Kristy K. Ward and Nichol L.G. Miller, UC San Diego Moores Cancer Center; Ju-Ock Nam, Kyungpook National University, Korea; Colin T. Walsh, Binomics, San Diego; Majid Ghassemian, UCSD Department of Chemistry and Biochemistry; Patrick Turowski, University College London; Elisabetta Dejana, University of Milan; Sara Weis and David A. Cheresh, Department of Pathology, UC San Diego Moores Cancer Center.

Funding for this research came, in part, from the National Institutes of Health (grants RO1 HL093156, RO1 CA102310, and R37 CA50286), Italian Association for Cancer Research and The European Research Council, American Heart Association, Susan G. Komen for the Cure, Canadian Institutes of Health Research, Ruth Kirschstein National Research Service Award and Nine Girls Ask?

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht New mechanisms uncovered explaining frost tolerance in plants
26.09.2016 | Technische Universität München

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>