Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No place like elsewhere for the lodgepole pine

05.02.2014
Thanks to its excellent growth, the Canadian lodgepole pine has become a popular feature of forestry in Northern Sweden.

Researchers from the Swedish University of Agricultural Sciences are now able to demonstrate that organisms in the Swedish soil most likely contribute to the success of this exotic tree species.


A Pinus contorta landscape in northern British Columbia, Canada, which is the general region where much of the Swedish P. contorta originated.

Photo: Michael Gundale

When the researchers studied the growth of the lodgepole pine in sterilized and unsterilized Swedish and Canadian soil samples, they discovered clear differences in growth: it grew better in soil inoculated with Swedish soil biota compared to Canadian soil biota.

These results improve our understanding of why some exotic tree species and invasive plants at times can function so well in new environments.

Plants are often moved away from their natural provenance, and sometimes they become stronger competitors in their new habitat. This may be welcomed by agriculture and forestry, while an introduced plant spreading uncontrollably in nature can become a major concern. The reason why plants sometimes function very differently in a new environment is a question that many researchers are currently focusing on.

Michael Gundale and his colleagues from the Swedish University of Agricultural Sciences (SLU) have focused on what the organisms found in Swedish and Canadian soils mean for the growth of the lodgepole pine*. There is a multitude of life forms in soil, some of which may be harmful (such as diseases and herbivores), and some of which may be beneficial (such as mycorrhizal fungi). By conducting a series of experiments on young plants, the researchers have shown that the growth of the lodgepole pine is greatly affected by which organisms live in the soil.

A first greenhouse trial indicated that the plants grew much better in soil samples from the areas in northern Sweden where the lodgepole pine has been introduced, compared with the soil samples from its original habitat in Canadian British Columbia. When the experiment was repeated in soil samples that had been sterilised through gamma irradiation, the growth was no longer affected by the soil being Swedish or Canadian. It also turned out that sterilised soil (regardless of origin) inoculated with Canadian organisms showed stunted growth, while “Swedish inoculation” improved growth.

“We have therefore clear evidence that differences in soil organisms between Pinus contorta’s Canadian and Swedish ranges have a great impact on the trees growth,” says Michael Gundale. “One plausible explanation is that plants growing in Canadian soil are exposed to antagonistic microorganisms that are specialised to lodgepole pine, while the Swedish soil offers an enhanced mutualism with mycorrhizal fungi. But we have not yet had the opportunity to examine this.”

Earlier experiments have looked at why a certain species does better in a new environment than in its natural habitat. However, these experiments have often only looked at one or a few of the many factors that could contribute to such a success, and no statements can therefore be made in respect to the importance of various factors in relation to each other. What makes this SLU study unique is that the researchers have not only examined the importance of soil biota, but have also considered a number of other factors that could also affect growth differences between the countries; they used soil samples from several places in Sweden and Canada, collected seeds from several areas, tested different fertilisation levels and took into account chemical and physical variations in the soil. However, the importance of Swedish and Canadian soil biota for growth remained the same, regardless of how all of these other factors were altered.

“I would love to conduct an equivalent study on Swedish pines,” concludes Michael Gundale. “If it were to turn out that the Swedish pines (Pinus sylvestris) are equally stunted by the indigenous soil organisms, it would be interesting to examine which soil biota are responsible for it, and what could be done to protect the plants.”

* The lodgepole pine (Pinus contorta) originates from western North America. In the north of Sweden, the lodgepole pine has been planted on hundreds of thousands of acres. This introduction started in the 1970s and, at the time, it was thought that a natural rejuvenation could only take place in connection with a fire - which would prevent an uncontrollable spread. This however has not proven to be entirely true.

The article
Interactions with soil biota shift from negative to positive when a tree species is moved outside its native range. New Phytologist (2014). (by Michael J. Gundale, Paul Kardol, Marie-Charlotte Nilsson, Urban Nilsson, Richard W. Lucas & David A. Wardle)

doi: 10.1111/nph.12699.

Further information:
Michael J. Gundale, Associate Professor, Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden

+46 (0)90-786 84 27, Michael.Gundale@slu.se

Pressofficer David Stephansson; David.Stephansson@slu.se, +46-72 511 69 90

Press images may be published without charge in articles about these findings, please acknowledge the photographer.

David Stephansson | idw
Further information:
http://www.seksko.se/
http://www.vr.se

More articles from Agricultural and Forestry Science:

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

nachricht Ecological intensification of agriculture
09.09.2016 | Julius-Maximilians-Universität Würzburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>