Counterfeiting And Piracy: EU Research Helps Tackle The Problem

How can you be sure your watch is not a fake? How can you avoid a cargo container’s shipment changing, or disappearing, between departure and the arrival?

The Commission’s Joint Research Centre (JRC) has developed technical devices that support the fight against falsification and illegal trafficking. Using sophisticated technologies, originally devised for nuclear safeguards, the Commission has invented and tested prototypes and applications for the identification of watches and for the sealing of cargo containers. These include radio transponders embedded in watches, ultrasonic identification of particular markings in watches, and electronic seals of cargo shipments using multiple radio transponders.

Counterfeiting, piracy and illegal trafficking affect between 5% and 7% of world trade. The forgery business accounts for a €450 billion turnover per year worldwide, 60% of which occurs in EU countries. With a 5% share, forged watches represent one of the most affected sectors.

“This is an example of how science can help fight against counterfeiting and piracy” says European Research Commissioner Busquin. “They represent a real scourge on a global level and affect mostly EU business, the prime victim of these illegal practices. We cannot be 100% sure the expensive watch we just bought is the original brand. And how can we check what’s going on in the ship or plane carrying our company’s good across the world? Public authorities and law enforcement agencies are of course at the forefront in this fight. But the innovative technologies developed by the Commission help provide for a solution to this struggle against piracy crime.”

What’s on your wrist?

EU scientists propose two different patented technologies, for confirming that watches are genuine:

• The use of passive transponders, with information stored on a microchip included in a passive radio frequency transponder. The transponder, capable of transmitting the signal through metal up to 0.5 mm thick, is embedded inside the back cover of the watch. This transponder’s signal can be picked up from the outside thanks to a specific antenna, connected to a database (available on-line) which matches the transponder identity to the watch number. The date of sale and owner’s name can also be stored in the transponder if required.

• Ultrasonic techniques, to be used in mechanical watches not containing electronic parts. Small holes are drilled on the back of the upper watch crown. An ultrasonic reader is capable of correlating the number and position of the holes to the number of the watch through an on-line database. This method does not require any electronic devices to be placed within the watch.

How can you secure shipments?

Container traffic represents approximately 90% of all cargo shipments, amounting to around 250 million moves annually. Antifraud and security are major concerns. Proper sealing of containers has therefore become of high importance. Conventional sealing methods cannot guarantee container integrity and detect intrusion, nor can they provide information on what is happening in the cargo and to goods stored in it.

Break-in proof seal

The Commission has developed an inexpensive sealing clamp, based on multi-transponder technology. This innovative seal displays excellent mechanical strength and a unique system of identification. It confirms its correct installation, detects any illegal opening and, if required, stores information within a permanent memory located inside the seal.

All the readings/writings can be done automatically through an antenna and stored in a database, available on line, and can give real-time information about correct installation, integrity of the seal, and readings done at each checkpoint. This low-cost product has a promising potential market for sealing and identification of commercial containers to detect illegal openings and to follow the course of shipment up until delivery. It is protected by patent pending: 2694 PP Brevet 13103 filed 27/11/2002.

Check your cargo from your palmtop

All the identification and sealing system information is organised and stored inside a demo database (TDBS), a network-based data management application. TDBS’s purpose is to store seal verification data and to make them available in real time across any auditing network.

Once the data has been uploaded, it becomes instantly accessible on the net. TDBS is a client-server system where most of the technical load is placed on the server side, to ensure it is user-friendly for the client, regardless of his computer power. It is therefore possible for clients to use handheld devices (such as palmtops or cellular phones via a WAP, or wireless application protocol interface) in order to access TDBS without any limitation in quality, speed or number of offered features.

Othe EU initiatives

Other EU initiatives to tackle counterfeiting and piracy include the new regulation on seizure of counterfeit goods by customs at ports, airports and external frontiers (see IP/03/1059) and the proposed Directive on enforcement of intellectual property rights (see IP/03/144 and MEMO/03/20).

Media Contact

Berta Duane European Commission

Alle Nachrichten aus der Kategorie: Transportation and Logistics

This field deals with all spatial and time-related activities involved in bridging the gap between goods and people, including their restructuring. This begins with the supplier and follows each stage of the operational value chain to product delivery and concludes with product disposal and recycling.

innovations-report provides informative reports and articles on such topics as traffic telematics, toll collection, traffic management systems, route planning, high-speed rail (Transrapid), traffic infrastructures, air safety, transport technologies, transport logistics, production logistics and mobility.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Argonne targets lithium-rich materials as key to more sustainable cost-effective batteries

Next-generation batteries using lithium-rich materials could be more sustainable and cost-effective, according to a team of researchers with the U.S. Department of Energy’s (DOE) Argonne National Laboratory. The pivotal discovery,…

Why disordered light-harvesting systems produce ordered outcomes

Scientists typically prefer to work with ordered systems. However, a diverse team of physicists and biophysicists from the University of Groningen found that individual light-harvesting nanotubes with disordered molecular structures…

RadarGlass – from vehicle headlight to radar transceiver

As a result of modern Advanced Driver Assistance Systems, the use of radar technology has become indispensable for the automotive sector. With the installation of a large and growing number…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close