Development of quieter vertical lift aircraft

A researchers prepares for particle image velocimetry measurements of unsteady inflow into a rotor inside the test section of Virginia Tech’s Stability Wind Tunnel.
Photo courtesy of Nathan Alexander for Virginia Tech

NASA grant funds aeroacoustic research…

As noise levels in urban spaces swell, a multi-university partnership seeks to turn down the volume on urban air mobility vehicles.

Drone delivery is rapidly taking off in major cities, with rotor-powered rideshares not far behind. The convenience promised by electric vertical take-off and landing vehicles generates a substantial buzz – not just from excitement but from all the noise generated by rotors filling the sky.

To address key challenges facing the future of air transport, NASA has awarded $5.7 million to a multi-university partnership as part of the agency’s University Leadership Initiative.

The project, led by Boston University over the next three years, will bring together researchers and engineers from Virginia Tech, Embry-Riddle University, Tuskegee University, and industry partner Joby Aviation to focus on developing quieter vertical lift air vehicles.

Advanced or urban air mobility concept vehicles are typically electric vertical take-off and landing, commonly called eVTOL, vehicles with four or more rotors. The grant will support research into the technical and environmental challenges of flying in urban environments.

Added convenience, added noise

As populations in urban areas continue to grow, increased traffic and industrial activity is causing cities to become louder and louder. Factoring in new modes of transportation, such as vertical lift air vehicles, will contribute to already existing noise pollution.

The research will develop methods to better predict low noise operations of such vehicles within the urban canyon. The research team will explore how much the ingestion of large-scale disturbances during flight, such as gusts of winds, will affect rotor noise.

“This is a complicated problem,” said W. Nathan Alexander, assistant professor in the Kevin T. Crofton Department of Aerospace and Ocean Engineering. “While a helicopter has one main rotor, these vehicles have multiple rotors. This provides additional degrees of freedom to control sound through individual rotor RPM and tilt, but it also makes the problem more complex. The goal is to determine the optimal configuration for safe operations in unsteady environments that also produce low noise.”

Both computational and experimental methods will be used to satisfy the research objectives.

Virginia Tech will take point on the experimental studies and has been awarded $1.3 million from the total NASA grant. Alexander, an expert in fluid dynamics, flow-structure interaction, and flow generated noise, will team with Nanyaporn Intaratep, research assistant professor, to plan and execute testing in the Stability Wind Tunnel. 

The Stability Wind Tunnel is one of the leading university-owned research facilities of its kind specializing in aerodynamic and aeroacoustic testing. In addition to low background noise, the facility boasts state-of-the-art instrumentation and unique capabilities for measuring aeroacoustic flow, such as its 251-channel microphone array and stereoscopic particle image velocimetry  systems.

Working with Joby Aviation, Alexander and Intaratep will design and conduct experiments to assess the aerodynamic and acoustic performances of multirotor configurations.

The team’s experiments will focus on the rotors themselves – studying their interaction in gusty environments, and measuring the RPM, thrust, torque, and noise from a variety of angles, as well as the flow field in and around those rotors.

The data captured will help validate computational models from university partners to predict the steady state noise as well as a vehicle’s response to disturbances in an urban setting.

Throughout the experimentation phase, Alexander and Intaratep will also develop a virtual lab to increase the research’s educational impact. “Most institutions do not have a facility like the Stability Wind Tunnel,” Alexander said. “By using what we learned over the COVID-19 pandemic in delivering a meaningful, online lab experience, we will be able to offer students at our partner universities the ability to participate in real flow and noise data acquisition and processing.”

The methods and data derived from this study will be open-sourced, aiding in the industry advancement of vertical lift air vehicles. The research will also provide graduate and undergraduate students hands-on research experience related to the urban air mobility industry.

Media Contact

Suzanne Miller
Virginia Tech
Cell: 540-267-4375

Media Contact

Suzanne Miller
Virginia Tech

All latest news from the category: Transportation and Logistics

This field deals with all spatial and time-related activities involved in bridging the gap between goods and people, including their restructuring. This begins with the supplier and follows each stage of the operational value chain to product delivery and concludes with product disposal and recycling.

innovations-report provides informative reports and articles on such topics as traffic telematics, toll collection, traffic management systems, route planning, high-speed rail (Transrapid), traffic infrastructures, air safety, transport technologies, transport logistics, production logistics and mobility.

Back to home

Comments (0)

Write a comment

Newest articles

When the music changes, so does the dance

Controlling cooperative electronic states in Kagome metals. Playing a different sound track is, physically speaking, only a minute change of the vibration spectrum, yet its impact on a dance floor…

EcoFABs could lead to better bioenergy crops

Fabricated ecosystems created at Berkeley Lab will expedite microbiome research, and help underrepresented students in the classroom. A greater understanding of how plants and microbes work together to store vast…

Rice lab finds better way to handle hard-to-recycle material

Process transforms glass fiber-reinforced plastic into silicon carbide. Glass fiber-reinforced plastic (GFRP), a strong and durable composite material, is widely used in everything from aircraft parts to windmill blades. Yet…

Partners & Sponsors