New study bolsters beliefs about DNA repair

The function of HP1 proteins has puzzled researchers. The proteins, which come in three forms in mammals, cozy up to heterochromatin—the tightly wound sections of DNA where genes are usually inactive.

Early studies indicated that the proteins' job was to turn genes off. But recent work suggested that the proteins are essential for repairing damaged DNA. These results came from in vitro studies, however, and the proteins' powers in vivo remained uncertain.

Aucott et al. created the first mouse strain missing one of the HP1 versions, HP1b. The animals die shortly after birth because their lungs don't inflate. The rodents show brain defects as well. Large numbers of neurons die, for example, and the neural stem cells in the cortex divide sluggishly. Both effects could arise from unfixed DNA.

When the researchers grew brain cells from HP1b-lacking mice in culture, they saw clear indications of genomic instability that can result from faulty DNA repair, including unpaired sister chromatids that separated prematurely and even extra sets of chromosomes. The HP1 proteins latch onto the methylated version of the H3 histone, but how this interaction promotes repair is an unanswered question.

Aucott, R., et al. 2008. J. Cell Biol. doi:10.1083/jcb.200804041.

Media Contact

Rita Sullivan EurekAlert!

More Information:

http://www.rockefeller.edu

All latest news from the category: Studies and Analyses

innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors