Unique THz “Fingerprints” Will Identify Hidden Explosives from a Distance

The new all-optical system, using terahertz (THz) wave technology, has great potential for homeland security and military uses because it can “see through” clothing and packaging materials and can identify immediately the unique THz “fingerprints” of any hidden materials.

Terahertz waves occupy a large segment of the electromagnetic spectrum between the infrared and microwave bands, which can provide imaging and sensing technologies not available through conventional technologies such as X-ray and microwave.

“The potential of THz wave remote sensing has been recognized for years, but practical application has been blocked by the fact that ambient moisture interferes with wave transmission,” said Xi-Cheng Zhang, director of the Center for THz Research at Rensselaer.

Zhang, the J. Erik Jonsson Professor of Science at Rensselaer, is lead author of a paper to be published next week in the journal Nature Photonics. Titled “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” the paper describes the new system in detail.

The “all-optical” technique for remote THz sensing uses laser-induced fluorescence, essentially focusing two laser beams together into the air to remotely create a plasma that interacts with a generated THz wave. The plasma fluorescence carries information from a target material to a detector where it is instantly compared with material spectrum in the THz “library,” making possible immediate identification of a target material.

“We have shown that you can focus an 800 nm laser beam and a 400 nm laser beam together into the air to remotely create a plasma interacting with the THz wave, and use the plasma fluorescence to convey the information of the THz wave back to the local detector,” said Zhang.

Repeated terrorist threats and the thwarted Christmas Eve bombing attempt aboard a Northwest Airlines flight heightened interest in developing THz remote sensing capabilities, especially from Homeland Security and the Defense Department, which have funded much of the Rensselaer research.

Because THz radiation transmits through almost anything that is not metal or liquid, the waves can “see” through most materials that might be used to conceal explosives or other dangerous materials, such as packaging, corrugated cardboard, clothing, shoes, backpacks, and book bags.

Unlike X-rays, THz radiation poses little or no health threat. However, the technique cannot detect materials that might be concealed in body cavities.

“Our technology would not work for owners of an African diamond mine who are interested in the system to stop workers from smuggling out diamonds by swallowing them,” Zhang said.

Though most of the research has been conducted in a laboratory setting, the technology is portable and eventually could be used to check out backpacks or luggage abandoned in an airport for explosives, other dangerous materials, or for illegal drugs. On battlefields, it could detect where explosives are hidden.

The fact that each substance has its own unique THz “fingerprint” will show exactly what compound or compounds are being hidden, a capability that is expected to have multiple important and unexpected uses. In the event of a chemical spill, for instance, remote sensing could identify the composition of the toxic mix. Since sensing is remote, no individuals will be needlessly endangered.

“I think I can predict that, within a few years, the THz science and technology will become more available and ready for industrial and defense-related use,” Zhang said.

Co-authors of the Nature Photonics paper are Rensselaer’s Jingle Liu, Research Associate Professor Jianming Dai, and Professor See-Leang Chin of Quebec’s University of Laval.

Contact: Mark Marchand, Rensselaer Polytechnic Institute, (518) 276-6098, marchm3@rpi.edu or

Marshall Hoffman, (703) 533-3535, (703) 801-8602 (mobile), marshall@hoffmanpr.com

This news release is based on the article in Nature Photonics and available here: http://www.hoffmanpr.com/world/Rensselaer/nphoton-2010-165.pdf

Media Contact

Mark Marchand Newswise Science News

More Information:

http://www.rpi.edu

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Recovering phosphorus from sewage sludge ash

Chemical and heat treatment of sewage sludge can recover phosphorus in a process that could help address the problem of diminishing supplies of phosphorus ores. Valuable supplies of phosphorus could…

Efficient, sustainable and cost-effective hybrid energy storage system for modern power grids

EU project HyFlow: Over three years of research, the consortium of the EU project HyFlow has successfully developed a highly efficient, sustainable, and cost-effective hybrid energy storage system (HESS) that…

After 25 years, researchers uncover genetic cause of rare neurological disease

Some families call it a trial of faith. Others just call it a curse. The progressive neurological disease known as spinocerebellar ataxia 4 (SCA4) is a rare condition, but its…

Partners & Sponsors